Oligodendrocytes are one type of glial cells responsible for myelination and providing trophic support for axons in the central nervous system of vertebrates. Thanks to myelin, the speed of electrical-signal conduction increases several hundred-fold because myelin serves as a kind of electrical insulator of nerve f ibers and allows for quick saltatory conduction of action potentials through Ranvier nodes, which are devoid of myelin. Given that different parts of the central nervous system are myelinated at different stages of development and most regions contain both myelinated and unmyelinated axons, it is obvious that very precise mechanisms must exist to control the myelination of individual axons. As they go through the stages of specif ication and differentiation - from multipotent neuronal cells in the ventricular zone of the neural tube to mature myelinating oligodendrocytes as well as during migration along blood vessels to their destination - cells undergo dramatic changes in the pattern of gene expression. These changes require precisely spatially and temporally coordinated interactions of various transcription factors and epigenetic events that determine the regulatory landscape of chromatin. Chromatin remodeling substantially affects transcriptional activity of genes. The main component of chromatin is the nucleosome, which, in addition to the structural function, performs a regulatory one and serves as a general repressor of genes. Changes in the type, position, and local density of nucleosomes require the action of specialized ATPdependent chromatin-remodeling complexes, which use the energy of ATP hydrolysis for their activity. Mutations in the genes encoding proteins of the remodeling complexes are often accompanied by serious disorders at early stages of embryogenesis and are frequently identif ied in various cancers. According to the domain arrangement of the ATP-hydrolyzing subunit, most of the identif ied ATP-dependent chromatin-remodeling complexes are classif ied into four subfamilies: SWI/SNF, CHD, INO80/SWR, and ISWI. In this review, we discuss the roles of these subunits of the different subfamilies at different stages of oligodendrogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453368 | PMC |
http://dx.doi.org/10.18699/VJ21.064 | DOI Listing |
Bone
December 2024
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. Electronic address:
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo 255300, China.
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from pre-implantation and post-implantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BAF chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
-rearranged Renal Cell Carcinoma (TFE3-RCC) is an aggressive subtype of RCC characterized by Xp11.2 rearrangement, leading to TFE3 fusion proteins with oncogenic potential. Despite advances in understanding its molecular biology, effective therapies for advanced cases remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!