At all stages of f lowering, a decisive role is played by the family of MADS-domain transcription factors, the combinatorial action of which is described by the ABCDE-model of f lower development. The current volume of data suggests a high conservatism of ABCDE genes in angiosperms. The E-proteins SEPALLATA are the central hub of the MADS-complexes, which determine the identity of the f loral organs. The only representative of the SEPALLATA3 clade in tomato Solanum lycopersicum L., SlMADS5, is involved in determining the identity of petals, stamens, and carpels; however, data on the functions of the gene are limited. The study was focused on the SlMADS5 functional characterization. Structural and phylogenetic analyses of SlMADS5 conf irmed its belonging to the SEP3 clade. An in silico expression analysis revealed the absence of gene transcripts in roots, leaves, and shoot apical meristem, and their presence in f lowers, fruits, and seeds at different stages of development. Two-hybrid analysis showed the ability of SlMADS5 to activate transcription of the target gene and interact with TAGL1. Transgenic plants Nicotiana tabacum L. with constitutive overexpression of SlMADS5 cDNA f lowered 2.2 times later than the control; plants formed thickened leaves, 2.5-3.0 times thicker stems, 1.5-2.7 times shortened internodes, and 1.9 times fewer f lowers and capsules than non-transgenic plants. The f lower structure did not differ from the control; however, the corolla petals changed color from light pink to magenta. Analysis of the expression of SlMADS5 and the tobacco genes NtLFY, NtAP1, NtWUS, NtAG, NtPLE, NtSEP1, NtSEP2, and NtSEP3 in leaves and apexes of transgenic and control plants showed that SlMADS5 mRNA is present only in tissues of transgenic lines. The other genes analyzed were highly expressed in the reproductive meristem of control plants. Gene transcripts were absent or were imperceptibly present in the leaves and vegetative apex of the control, as well as in the leaves and apexes of transgenic lines. The results obtained indicate the possible involvement of SlMADS5 in the regulation of f lower meristem development and the pathway of anthocyanin biosynthesis in petals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453369PMC
http://dx.doi.org/10.18699/VJ21.056DOI Listing

Publication Analysis

Top Keywords

control plants
12
slmads5
9
tomato solanum
8
solanum lycopersicum
8
gene transcripts
8
leaves apexes
8
apexes transgenic
8
transgenic lines
8
gene
5
leaves
5

Similar Publications

Silymarin: a promising modulator of apoptosis and survival signaling in cancer.

Discov Oncol

January 2025

Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.

Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.

View Article and Find Full Text PDF

Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.

View Article and Find Full Text PDF

OsMAINTENANCE OF MERISTEM LIKE 1 controls style number at high temperatures in rice.

Plant Mol Biol

January 2025

Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy.

OsMAIL1 encodes for a rice protein of the Plant Mobile Domain (PMD) family and is strongly upregulated during floral induction in response to the presence of the florigens Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Although OsMAIL1 expression depends on the florigens, osmail1 null mutants do not show delay in flowering time, rather OsMAIL1 participates in ensuring successful reproduction. Indeed, when day temperatures reach 35 °C (7 °C higher than standard greenhouse conditions), osmail1 mutants show increased sterility due to abnormal pistil development with about half of the plants developing three styles topped by stigmas.

View Article and Find Full Text PDF

Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.

View Article and Find Full Text PDF

A simple and efficient TALEN system for genome editing in plants.

Plant Mol Biol

January 2025

Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!