Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422228 | PMC |
http://dx.doi.org/10.46234/ccdcw2020.268 | DOI Listing |
Can J Ophthalmol
January 2025
Faculty of Medicine, University of Montreal, Montreal, QB, Canada; Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal, Montreal, QB, Canada. Electronic address:
Objective: To evaluate the performance of large language models (LLMs), specifically Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced), in answering ophthalmological questions and assessing the impact of prompting techniques on their accuracy.
Design: Prospective qualitative study.
Participants: Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced).
J Imaging
January 2025
School of Information Technology, Sripatum University, Bangkok 10900, Thailand.
This study introduces a novel AI-driven approach to support elderly patients in Thailand with medication management, focusing on accurate drug label interpretation. Two model architectures were explored: a Two-Stage Optical Character Recognition (OCR) and Large Language Model (LLM) pipeline combining EasyOCR with Qwen2-72b-instruct and a Uni-Stage Visual Question Answering (VQA) model using Qwen2-72b-VL. Both models operated in a zero-shot capacity, utilizing Retrieval-Augmented Generation (RAG) with DrugBank references to ensure contextual relevance and accuracy.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan.
Mathematical modeling has been utilized to explain biological pattern formation, but the selections of models and parameters have been made empirically. In the present study, we propose a data-driven approach to validate the applicability of mathematical models. Specifically, we developed methods to automatically select the appropriate mathematical models based on the patterns of interest and to estimate the model parameters.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Purpose: The potential of Large Language Models (LLMs) in enhancing a variety of natural language tasks in clinical fields includes medical imaging reporting. This pilot study examines the efficacy of a retrieval-augmented generation (RAG) LLM system considering zero-shot learning capability of LLMs, integrated with a comprehensive database of PET reading reports, in improving reference to prior reports and decision making.
Methods: We developed a custom LLM framework with retrieval capabilities, leveraging a database of over 10 years of PET imaging reports from a single center.
Healthc Technol Lett
December 2024
Robotics and Control Laboratory, Department of Electrical and Computer Engineering The University of British Columbia Vancouver Canada.
The Segment Anything model (SAM) is a powerful vision foundation model that is revolutionizing the traditional paradigm of segmentation. Despite this, a reliance on prompting each frame and large computational cost limit its usage in robotically assisted surgery. Applications, such as augmented reality guidance, require little user intervention along with efficient inference to be usable clinically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!