Here we investigated the role of hydrogen bonding in the design of supramolecular azopolymers with a highly directional and constrained azobenzene-chain interaction involving the aromatic ring of the photoactive molecule, by exploiting the 2-aminopyrimidine/carboxylic acid supramolecular synthon as the tool for molecular recognition. We have shown that this approach is advantageous for producing affordable and versatile photopatternable azomaterials by complexation with polyacrylic acid (PAA). Molecular model complexes were successfully prepared and characterized by X-ray diffraction analysis and FTIR spectroscopy to reveal the multiple, non-ionic interaction occurring between the azobenzene units and the polymer chains. Surface photopatterning of thin films, driven by the typical mass migration phenomenon occurring in azopolymers, resulted strongly enhanced with increasing azobenzene content until equimolar composition. Results show that polymers with synthon-based azobenzenes markedly outperform single H-bonded systems bearing azomolecules with similar structure and electronic properties. We finally demonstrated that the azobenzene units can be easily extracted from a photopatterned film by a simple solvent rinse and without any chemical pre-treatment, leaving the periodicity of the inscribed surface relief gratings unaltered. This result was enabled by the orthogonal solubility of the components in the supramolecular system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411878PMC
http://dx.doi.org/10.1039/d1tc02266kDOI Listing

Publication Analysis

Top Keywords

mass migration
8
supramolecular azopolymers
8
azobenzene units
8
enhanced photoinduced
4
photoinduced mass
4
supramolecular
4
migration supramolecular
4
azopolymers h-bond
4
h-bond driven
4
driven positional
4

Similar Publications

Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In , glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway.

View Article and Find Full Text PDF

The Research Program ( ) seeks to accelerate biomedical research and address the underrepresentation of minorities by recruiting over one million ethnically diverse participants across the United States. A key question is how self-identification with discrete, predefined race and ethnicity categories compares to genetic diversity at continental and subcontinental levels. To contextualize the genetic diversity in , we analyzed ∼2 million common variants from 230,016 unrelated whole genomes using classical population genetics methods, alongside reference panels such as the 1000 Genomes Project, Human Genome Diversity Project, and Simons Genome Diversity Project.

View Article and Find Full Text PDF

Globally, there are 15 million stroke patients each year who have significant neurological deficits. Today, there are no treatments that directly address these deficits. With demographics shifting to an older population, the problem is worsening.

View Article and Find Full Text PDF

Multilayer laminated films are widely used as food packaging materials. The substances contained in these films have the potential to migrate into food in contact, but the actual situation is unknown. In this study, we first determined the contents of 24 elements in 42 food laminate bags by ICP-OES and ICP-MS.

View Article and Find Full Text PDF

Occurrence and migration of synthetic phenolic antioxidants in food packaging materials: Effects of plastic types and storage temperature.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

Synthetic phenolic antioxidants (SPAs) are widely used in food packaging materials to extend product shelf life. Not much attention has been paid to high molecular weight SPAs (HMW SPAs) so far, despite their potential health risks. In this study, we first analyzed the concentrations of ten HMW SPAs in food plastic packaging materials (including 6 plastic categories, n = 116).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!