Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When Pacific salmon ( spp.) spawn and die, they deliver marine-derived nutrient subsidies to freshwater and riparian ecosystems. These subsidies can alter the behavior, productivity, and abundance of recipient species and their habitats. Isotopes, such as nitrogen-15 (N), are often used to trace the destination of marine-derived nutrients in riparian habitats. However, few studies have tested for correlations between stable isotopes and physiological responses of riparian organisms. We examined whether increases in N in terrestrial insect bodies adjacent to salmon spawning habitat translate to changes in percent nitrogen content and body size. This involved comparisons between distance from a salmon-bearing river, marine-derived nutrients in soils and insects, soil moisture content, and body size and nitrogen content in two common beetle families (Coleoptera: Curculionidae, Carabidae). As predicted, δN in riparian soils attenuated with distance from the river but was unaffected by soil moisture. This gradient was mirrored by δN in the herbivorous curculionid beetles, whereas carabid beetles, which feed at a higher trophic level and are more mobile, did not show discernable patterns in their δN content. Additionally, neither distance from the river nor body δN content was related to beetle body size. We also found that nitrogen-15 was not correlated with total percent nitrogen in insect bodies, meaning that the presence of spawning salmon did not increase the percent nitrogen content of these insects. We conclude that while salmon-derived nutrients had entered terrestrial food webs, the presence of δN alone did not indicate meaningful physiological changes in these insects in terms of percent nitrogen nor body size. While stable isotopes may be useful tracers of marine-derived nutrients, they cannot necessarily be used as a proxy for physiologically important response variables.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462137 | PMC |
http://dx.doi.org/10.1002/ece3.8017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!