A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accurate Simulation of Both Sensitivity and Variability for Amazonian Photosynthesis: Is It Too Much to Ask? | LitMetric

Estimates of Amazon rainforest gross primary productivity (GPP) differ by a factor of 2 across a suite of three statistical and 18 process models. This wide spread contributes uncertainty to predictions of future climate. We compare the mean and variance of GPP from these models to that of GPP at six eddy covariance (EC) towers. Only one model's mean GPP across all sites falls within a 99% confidence interval for EC GPP, and only one model matches EC variance. The strength of model response to climate drivers is related to model ability to match the seasonal pattern of the EC GPP. Models with stronger seasonal swings in GPP have stronger responses to rain, light, and temperature than does EC GPP. The model to data comparison illustrates a trade-off inherent to deterministic models between accurate simulation of a mean (average) and accurate responsiveness to drivers. The trade-off exists because all deterministic models simplify processes and lack at least some consequential driver or interaction. If a model's sensitivities to included drivers and their interactions are accurate, then deterministically predicted outcomes have less variability than is realistic. If a GPP model has stronger responses to climate drivers than found in data, model predictions may match the observed variance and seasonal pattern but are likely to overpredict GPP response to climate change. High or realistic variability of model estimates relative to reference data indicate that the model is hypersensitive to one or more drivers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459247PMC
http://dx.doi.org/10.1029/2021MS002555DOI Listing

Publication Analysis

Top Keywords

gpp model
12
gpp
10
accurate simulation
8
gpp models
8
model
8
response climate
8
climate drivers
8
seasonal pattern
8
stronger responses
8
deterministic models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!