Flow cytometers are robust and ubiquitous tools of biomedical research, as they enable high-throughput fluorescence-based multi-parametric analysis and sorting of single cells. However, analysis is often constrained by the availability of detection reagents or functional changes of cells caused by fluorescent staining. Here, we introduce MAPS-FC (multi-angle pulse shape flow cytometry), an approach that measures angle- and time-resolved scattered light for high-throughput cell characterization to circumvent the constraints of conventional flow cytometry. In order to derive cell-specific properties from the acquired pulse shapes, we developed a data analysis procedure based on wavelet transform and k-means clustering. We analyzed cell cycle stages of Jurkat and HEK293 cells by MAPS-FC and were able to assign cells to the G1, S, and G2/M phases without the need for fluorescent labeling. The results were validated by DNA staining and by sorting and re-analysis of isolated G1, S, and G2/M populations. Our results demonstrate that MAPS-FC can be used to determine cell properties that are otherwise only accessible by invasive labeling. This approach is technically compatible with conventional flow cytometers and paves the way for label-free cell sorting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484341PMC
http://dx.doi.org/10.1038/s42003-021-02664-3DOI Listing

Publication Analysis

Top Keywords

flow cytometry
12
multi-angle pulse
8
pulse shape
8
scattered light
8
label-free cell
8
cell cycle
8
flow cytometers
8
conventional flow
8
flow
5
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!