An improved data-free surrogate model for solving partial differential equations using deep neural networks.

Sci Rep

Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha, 410000, China.

Published: September 2021

Partial differential equations (PDEs) are ubiquitous in natural science and engineering problems. Traditional discrete methods for solving PDEs are usually time-consuming and labor-intensive due to the need for tedious mesh generation and numerical iterations. Recently, deep neural networks have shown new promise in cost-effective surrogate modeling because of their universal function approximation abilities. In this paper, we borrow the idea from physics-informed neural networks (PINNs) and propose an improved data-free surrogate model, DFS-Net. Specifically, we devise an attention-based neural structure containing a weighting mechanism to alleviate the problem of unstable or inaccurate predictions by PINNs. The proposed DFS-Net takes expanded spatial and temporal coordinates as the input and directly outputs the observables (quantities of interest). It approximates the PDE solution by minimizing the weighted residuals of the governing equations and data-fit terms, where no simulation or measured data are needed. The experimental results demonstrate that DFS-Net offers a good trade-off between accuracy and efficiency. It outperforms the widely used surrogate models in terms of prediction performance on different numerical benchmarks, including the Helmholtz, Klein-Gordon, and Navier-Stokes equations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484684PMC
http://dx.doi.org/10.1038/s41598-021-99037-xDOI Listing

Publication Analysis

Top Keywords

neural networks
12
improved data-free
8
data-free surrogate
8
surrogate model
8
partial differential
8
differential equations
8
deep neural
8
surrogate
4
model solving
4
solving partial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!