The structurally robust biopolymer sporopollenin is the major constituent of the exine layer of pollen wall and plays a vital role in plant reproductive success. The sporopollenin precursors are synthesized through an ancient polyketide biosynthetic pathway consisting of a series of anther-specific enzymes that are widely present in all land plant lineages. Tetraketide α-pyrone reductase 1 (TKPR1) and TKPR2 are two reductases catalyzing the final reduction of the carbonyl group of the polyketide synthase-synthesized tetraketide intermediates to hydroxylated α-pyrone compounds, important precursors of sporopollenin. In contrast to the functional conservation of many sporopollenin biosynthesis associated genes confirmed in diverse plant species, TKPR2's role has been addressed only in Arabidopsis, where it plays a minor role in sporopollenin biosynthesis. We identified in gerbera two non-anther-specific orthologues of AtTKPR2, Gerbera reductase 1 (GRED1) and GRED2. Their dramatically expanded expression pattern implies involvement in pathways outside of the sporopollenin pathway. In this study, we show that GRED1 and GRED2 are still involved in sporopollenin biosynthesis with a similar secondary role as AtTKPR2 in Arabidopsis. We further show that this secondary role does not relate to the promoter of the gene, AtTKPR2 cannot rescue pollen development in Arabidopsis even when controlled by the AtTKPR1 promoter. We also identified the gerbera orthologue of AtTKPR1, GTKPR1, and characterized its crucial role in gerbera pollen development. GTKPR1 is the predominant TKPR in gerbera pollen wall formation, in contrast to the minor roles GRED1 and GRED2. GTKPR1 is in fact an excellent target for engineering male-sterile gerbera cultivars in horticultural plant breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484347 | PMC |
http://dx.doi.org/10.1038/s41438-021-00642-8 | DOI Listing |
Nat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFJ Food Sci
December 2024
Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India.
Bee pollen is a nutrient-rich super food, but its rigid dual-layered structure limits nutrient release and absorption. The outer exine, composed of stress-resistant sporopollenin, and the inner intine, consisting of cellulose and pectin, form a barrier to digestive breakdown. This study investigates the potential of green techniques, specifically supercritical fluid extraction and ultrasonication, to disaggregate pollen cell walls, enhancing its bioavailability and maximizing nutrient utilization.
View Article and Find Full Text PDFNat Plants
November 2024
Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
Sporopollenin, a critical innovation in the evolution of terrestrial plants, is the core building brick for the outer wall of land-plant spores and pollen. Despite its significance, the basic structure of sporopollenin remains elusive due to its extreme chemical inertness. In this study, we used ethanolamine to completely dissolve rape sporopollenin and successfully identified a total of 22 components, including fatty acids, p-coumaric acid, sterols and polymeric phenylpropanoid derivatives.
View Article and Find Full Text PDFRice (N Y)
August 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China. Electronic address:
Male sterile lines are key resources for hybrid seed production and for ensuring high varietal purity. However, the genes and mechanisms underlying sesame male sterility remain largely unknown. Hence, this study identified an O-acetylserine(thiol)lyase gene SiOASTL1 and functionally characterized its roles in inducing defective anther development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!