https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=34593046&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3459304620211003
1880-96934112021Oct01Inflammation and regenerationInflamm RegenRole of chaperone-mediated autophagy in the pathophysiology including pulmonary disorders.29292910.1186/s41232-021-00180-9Autophagy is a highly conserved mechanism of delivering cytoplasmic components for lysosomal degradation. Among the three major autophagic pathways, chaperone-mediated autophagy (CMA) is primarily characterized by its selective nature of protein degradation, which is mediated by heat shock cognate 71 kDa protein (HSC70: also known as HSPA8) recognition of the KFERQ peptide motif in target proteins. Lysosome-associated membrane protein type 2A (LAMP2A) is responsible for substrate binding and internalization to lysosomes, and thus, the lysosomal expression level of LAMP2A is a rate-limiting factor for CMA. Recent advances have uncovered not only physiological but also pathological role of CMA in multiple organs, including neurodegenerative disorders, kidney diseases, liver diseases, heart diseases, and cancers through the accumulation of unwanted proteins or increased degradation of target proteins with concomitant metabolic alterations resulting from CMA malfunction. With respect to pulmonary disorders, the involvement of CMA has been demonstrated in lung cancer and chronic obstructive pulmonary disease (COPD) pathogenesis through regulating apoptosis. Further understanding of CMA machinery may shed light on the molecular mechanisms of refractory disorders and lead to novel treatment modalities through CMA modulation.© 2021. The Author(s).HosakaYusukeYDivision of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.ArayaJunJDivision of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan. araya@jikei.ac.jp.FujitaYuYDivision of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.KuwanoKazuyoshiKDivision of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.engJournal ArticleReview20211001
EnglandInflamm Regen1014795771880-8190AutophagyChaperone-mediated autophagyChronic obstructive pulmonary diseaseLung cancerThe authors declare no conflicts of interest associated with this manuscript.
202161720219820211015452021102602021102612021101epublish34593046PMC848545610.1186/s41232-021-00180-910.1186/s41232-021-00180-9Araya J, Hara H, Kuwano K. Autophagy in the pathogenesis of pulmonary disease. Intern Med. 2013;52(20):2295–2303. doi: 10.2169/internalmedicine.52.1118.10.2169/internalmedicine.52.111824126389Araya J, Kojima J, Takasaka N, Ito S, Fujii S, Hara H, Yanagisawa H, Kobayashi K, Tsurushige C, Kawaishi M, Kamiya N, Hirano J, Odaka M, Morikawa T, Nishimura SL, Kawabata Y, Hano H, Nakayama K, Kuwano K. Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2013;304(1):L56–L69. doi: 10.1152/ajplung.00213.2012.10.1152/ajplung.00213.201223087019Fujii S, Hara H, Araya J, Takasaka N, Kojima J, Ito S, Minagawa S, Yumino Y, Ishikawa T, Numata T, Kawaishi M, Hirano J, Odaka M, Morikawa T, Nishimura S, Nakayama K, Kuwano K. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology. 2012;1(5):630–641. doi: 10.4161/onci.20297.10.4161/onci.20297PMC342956722934255Carmona-Gutierrez D, Hughes AL, Madeo F, Ruckenstuhl C. The crucial impact of lysosomes in aging and longevity. Ageing Res Rev. 2016;32:2–12. doi: 10.1016/j.arr.2016.04.009.10.1016/j.arr.2016.04.009PMC508127727125853Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, Hara H, Minagawa S, Wakui H, Fujii S, Kojima J, Shimizu K, Numata T, Kawaishi M, Odaka M, Morikawa T, Harada T, Nishimura SL, Kaneko Y, Nakayama K, Kuwano K. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy. 2015;11(3):547–559. doi: 10.1080/15548627.2015.1017190.10.1080/15548627.2015.1017190PMC450268925714760Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, Sato N, Yoshida M, Tsubouchi K, Kurita Y, Ito S, Fujita Y, Takasaka N, Utsumi H, Yanagisawa H, Hashimoto M, Wakui H, Kojima J, Shimizu K, Numata T, Kawaishi M, Kaneko Y, Asano H, Yamashita M, Odaka M, Morikawa T, Nakayama K, Kuwano K. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J Immunol. 2016;197(2):504–516. doi: 10.4049/jimmunol.1600265.10.4049/jimmunol.160026527279371Tsubouchi K, Araya J, Kuwano K. PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflamm Regen. 2018;38(1):18. doi: 10.1186/s41232-018-0077-6.10.1186/s41232-018-0077-6PMC619972330386443Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018;19(6):365–381. doi: 10.1038/s41580-018-0001-6.10.1038/s41580-018-0001-6PMC639951829626215Ichikawa A, Fujita Y, Hosaka Y, Kadota T, Ito A, Yagishita S, et al. Chaperone-mediated autophagy receptor modulates tumor growth and chemoresistance in non-small cell lung cancer. Cancer Sci. 2020;111(11):4154–65. 10.1111/cas.14629.PMC764802632860290Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, Nakahira K, Pilewski JM, Lee JS, Zhang Y, Ryter SW, Choi AMK. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One. 2008;3(10):e3316. doi: 10.1371/journal.pone.0003316.10.1371/journal.pone.0003316PMC255299218830406Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, Hashimoto S, Ryter SW, Choi AMK. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 2014;124(9):3987–4003. doi: 10.1172/JCI74985.10.1172/JCI74985PMC415123325083992Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy. 2019;15(3):510–26. 10.1080/15548627.2018.1532259.PMC635114530290714Hosaka Y, Araya J, Fujita Y, Kadota T, Tsubouchi K, Yoshida M, Minagawa S, Hara H, Kawamoto H, Watanabe N, Ito A, Ichikawa A, Saito N, Okuda K, Watanabe J, Takekoshi D, Utsumi H, Hashimoto M, Wakui H, Ito S, Numata T, Mori S, Matsudaira H, Hirano J, Ohtsuka T, Nakayama K, Kuwano K. Chaperone-mediated autophagy suppresses apoptosis via regulation of the unfolded protein response during chronic obstructive pulmonary disease pathogenesis. J Immunol. 2020;205(5):1256–1267. doi: 10.4049/jimmunol.2000132.10.4049/jimmunol.200013232699159Quintavalle C, Di Costanzo S, Zanca C, Tasset I, Fraldi A, Incoronato M, et al. Phosphorylation-regulated degradation of the tumor-suppressor form of PED by chaperone-mediated autophagy in lung cancer cells. J Cell Physiol. 2014;229(10):1359–1368. doi: 10.1002/jcp.24569.10.1002/jcp.24569PMC431055024477641Cuervo AM, Dice JF, Knecht E. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem. 1997;272(9):5606–5615. doi: 10.1074/jbc.272.9.5606.10.1074/jbc.272.9.56069038169Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol. 2010;20(2):143–148. doi: 10.1016/j.cub.2009.11.022.10.1016/j.cub.2009.11.02220060297Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Dev Cell. 2011;20(1):131–139. doi: 10.1016/j.devcel.2010.12.003.10.1016/j.devcel.2010.12.003PMC302527921238931Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273(5274):501–503. doi: 10.1126/science.273.5274.501.10.1126/science.273.5274.5018662539Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM. Identification of regulators of chaperone-mediated autophagy. Mol Cell. 2010;39(4):535–547. doi: 10.1016/j.molcel.2010.08.004.10.1016/j.molcel.2010.08.004PMC294525620797626Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell. 2004;15(11):4829–4840. doi: 10.1091/mbc.e04-06-0477.10.1091/mbc.e04-06-0477PMC52473115331765Park C, Suh Y, Cuervo AM. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun. 2015;6(1):6823. doi: 10.1038/ncomms7823.10.1038/ncomms7823PMC440084325880015Valdor R, Mocholi E, Botbol Y, Guerrero-Ros I, Chandra D, Koga H, Gravekamp C, Cuervo AM, Macian F. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat Immunol. 2014;15(11):1046–1054. doi: 10.1038/ni.3003.10.1038/ni.3003PMC420827325263126Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol. 2017;312(2):L155–LL62. doi: 10.1152/ajplung.00449.2016.10.1152/ajplung.00449.201627864288Gan L, Vargas MR, Johnson DA, Johnson JA. Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J Neurosci. 2012;32(49):17775–17787. doi: 10.1523/JNEUROSCI.3049-12.2012.10.1523/JNEUROSCI.3049-12.2012PMC353979923223297Pajares M, Rojo AI, Arias E, Diaz-Carretero A, Cuervo AM, Cuadrado A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy. 2018;14(8):1310–1322. doi: 10.1080/15548627.2018.1474992.10.1080/15548627.2018.1474992PMC610369829950142Cuervo AM, Mann L, Bonten EJ, d'Azzo A, Dice JF. Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J. 2003;22(1):47–59. doi: 10.1093/emboj/cdg002.10.1093/emboj/cdg002PMC14004112505983Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci U S A. 2006;103(15):5805–5810. doi: 10.1073/pnas.0507436103.10.1073/pnas.0507436103PMC145865416585521Patil M, Pabla N, Dong Z. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci. 2013;70(21):4009–21. doi: 10.1007/s00018-013-1307-3.10.1007/s00018-013-1307-3PMC373141523508805Andrade-Tomaz M, de Souza I, Rocha CRR, Gomes LR. The role of chaperone-mediated autophagy in cell cycle control and its implications in cancer. Cells. 2020;9(9):2140. 10.3390/cells9092140.PMC756597832971884Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A, Semenza GL. Chaperone-mediated autophagy targets hypoxia-inducible factor-1alpha (HIF-1alpha) for lysosomal degradation. J Biol Chem. 2013;288(15):10703-10714, DOI: 10.1074/jbc.M112.414771.PMC362445023457305Garcia-Gutierrez L, Delgado MD, Leon J. MYC oncogene contributions to release of cell cycle brakes. Genes (Basel). 2019;10(3):244. 10.3390/genes10030244.PMC647059230909496Xu Y, Zhang Y, Garcia-Canaveras JC, Guo L, Kan M, Yu S, et al. Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science. 2020;369(6502):397–403. doi: 10.1126/science.abb4467.10.1126/science.abb4467PMC793950232703873Dong S, Wang Q, Kao YR, Diaz A, Tasset I, Kaushik S, et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature. 2021;591(7848):117–23. 10.1038/s41586-020-03129-z.PMC842805333442062Cuervo AM, Hu W, Lim B, Dice JF. IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell. 1998;9(8):1995–2010. doi: 10.1091/mbc.9.8.1995.10.1091/mbc.9.8.1995PMC254519693362Hu MM, Yang Q, Xie XQ, Liao CY, Lin H, Liu TT, Yin L, Shu HB. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity. 2016;45(3):555–569. doi: 10.1016/j.immuni.2016.08.014.10.1016/j.immuni.2016.08.01427637147Kaushik S, Massey AC, Mizushima N, Cuervo AM. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell. 2008;19(5):2179–2192. doi: 10.1091/mbc.e07-11-1155.10.1091/mbc.e07-11-1155PMC236685018337468Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24(1):92–104. doi: 10.1038/cr.2013.153.10.1038/cr.2013.153PMC387970224281265Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–1295. doi: 10.1126/science.1101738.10.1126/science.110173815333840Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AH. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol. 2010;67(12):1464–1472. doi: 10.1001/archneurol.2010.198.10.1001/archneurol.2010.19820697033Liao Z, Wang B, Liu W, Xu Q, Hou L, Song J, et al. Dysfunction of chaperone-mediated autophagy in human diseases. Mol Cell Biochem. 2021;476(3):1439–54. 10.1007/s11010-020-04006-z.33389491You Y, Li WZ, Zhang S, Hu B, Li YX, Li HD, Tang HH, Li QW, Guan YY, Liu LX, Bao WL, Shen X. SNX10 mediates alcohol-induced liver injury and steatosis by regulating the activation of chaperone-mediated autophagy. J Hepatol. 2018;69(1):129–141. doi: 10.1016/j.jhep.2018.01.038.10.1016/j.jhep.2018.01.03829452206Ma SY, Sun KS, Zhang M, Zhou X, Zheng XH, Tian SY, Liu YS, Chen L, Gao X, Ye J, Zhou XM, Wang JB, Han Y. Disruption of Plin5 degradation by CMA causes lipid homeostasis imbalance in NAFLD. Liver Int. 2020;40(10):2427–2438. doi: 10.1111/liv.14492.10.1111/liv.1449232339374Schneider JL, Suh Y, Cuervo AM. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 2014;20(3):417–432. doi: 10.1016/j.cmet.2014.06.009.10.1016/j.cmet.2014.06.009PMC415657825043815Sooparb S, Price SR, Shaoguang J, Franch HA. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int. 2004;65(6):2135–2144. doi: 10.1111/j.1523-1755.2004.00639.x.10.1111/j.1523-1755.2004.00639.x15149326Venugopal B, Mesires NT, Kennedy JC, Curcio-Morelli C, Laplante JM, Dice JF, et al. Chaperone-mediated autophagy is defective in mucolipidosis type IV. J Cell Physiol. 2009;219(2):344–353. doi: 10.1002/jcp.21676.10.1002/jcp.2167619117012Guo B, Li L, Guo J, Liu A, Wu J, Wang H, Shi J, Pang D, Cao Q. M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma. Oncotarget. 2017;8(27):44465–44476. doi: 10.18632/oncotarget.17973.10.18632/oncotarget.17973PMC554649428591705Wu JH, Guo JP, Shi J, Wang H, Li LL, Guo B, Liu DX, Cao Q, Yuan ZY. CMA down-regulates p53 expression through degradation of HMGB1 protein to inhibit irradiation-triggered apoptosis in hepatocellular carcinoma. World J Gastroenterol. 2017;23(13):2308–2317. doi: 10.3748/wjg.v23.i13.2308.10.3748/wjg.v23.i13.2308PMC538539728428710Du C, Huang D, Peng Y, Yao Y, Zhao Y, Yang Y, et al. 5-Fluorouracil targets histone acetyltransferases p300/CBP in the treatment of colorectal cancer. Cancer Lett. 2017;400:183–193. doi: 10.1016/j.canlet.2017.04.033.10.1016/j.canlet.2017.04.03328465257Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, Varticovski L, et al. Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med. 2011;3(109):109ra17.PMC400026122089453Gomes LR, Menck CFM, Cuervo AM. Chaperone-mediated autophagy prevents cellular transformation by regulating MYC proteasomal degradation. Autophagy. 2017;13(5):928–940. doi: 10.1080/15548627.2017.1293767.10.1080/15548627.2017.1293767PMC544608528410006Arias E, Cuervo AM. Pros and cons of chaperone-mediated autophagy in cancer biology. Trends Endocrinol Metab. 2020;31(1):53–66. doi: 10.1016/j.tem.2019.09.007.10.1016/j.tem.2019.09.007PMC702064931699565White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401–410. doi: 10.1038/nrc3262.10.1038/nrc3262PMC366438122534666Zhou J, Yang J, Fan X, Hu S, Zhou F, Dong J, Zhang S, Shang Y, Jiang X, Guo H, Chen N, Xiao X, Sheng J, Wu K, Nie Y, Fan D. Chaperone-mediated autophagy regulates proliferation by targeting RND3 in gastric cancer. Autophagy. 2016;12(3):515–528. doi: 10.1080/15548627.2015.1136770.10.1080/15548627.2015.1136770PMC483600926761524Ali AB, Nin DS, Tam J, Khan M. Role of chaperone mediated autophagy (CMA) in the degradation of misfolded N-CoR protein in non-small cell lung cancer (NSCLC) cells. PLoS One. 2011;6(9):e25268. doi: 10.1371/journal.pone.0025268.10.1371/journal.pone.0025268PMC317950921966475Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482(4):1334–1340. doi: 10.1016/j.bbrc.2016.12.037.10.1016/j.bbrc.2016.12.03727939888Barnes PJ. Senescence in COPD and its comorbidities. Annu Rev Physiol. 2017;79(1):517–539. doi: 10.1146/annurev-physiol-022516-034314.10.1146/annurev-physiol-022516-03431427959617Yamada K, Asai K, Nagayasu F, Sato K, Ijiri N, Yoshii N, Imahashi Y, Watanabe T, Tochino Y, Kanazawa H, Hirata K. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm Med. 2016;16(1):27. doi: 10.1186/s12890-016-0189-1.10.1186/s12890-016-0189-1PMC474845526861788Saito N, Araya J, Ito S, Tsubouchi K, Minagawa S, Hara H, Ito A, Nakano T, Hosaka Y, Ichikawa A, Kadota T, Yoshida M, Fujita Y, Utsumi H, Kurita Y, Kobayashi K, Hashimoto M, Wakui H, Numata T, Kaneko Y, Asano H, Odaka M, Ohtsuka T, Morikawa T, Nakayama K, Kuwano K. Involvement of lamin B1 reduction in accelerated cellular senescence during chronic obstructive pulmonary disease pathogenesis. J Immunol. 2019;202(5):1428–1440. doi: 10.4049/jimmunol.1801293.10.4049/jimmunol.180129330692212Hara H, Araya J, Takasaka N, Fujii S, Kojima J, Yumino Y, Shimizu K, Ishikawa T, Numata T, Kawaishi M, Saito K, Hirano J, Odaka M, Morikawa T, Hano H, Nakayama K, Kuwano K. Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol. 2012;46(3):306–312. doi: 10.1165/rcmb.2011-0214OC.10.1165/rcmb.2011-0214OC21980054Kelsen SG, Duan X, Ji R, Perez O, Liu C, Merali S. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol. 2008;38(5):541–550. doi: 10.1165/rcmb.2007-0221OC.10.1165/rcmb.2007-0221OC18079489Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer. 2008;8(1):229. doi: 10.1186/1471-2407-8-229.10.1186/1471-2407-8-229PMC252701518694499Kelsen SG. The unfolded protein response in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2016;13(Suppl 2):S138–S145.PMC501572027115948Li W, Zhu J, Dou J, She H, Tao K, Xu H, Yang Q, Mao Z. Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun. 2017;8(1):1763. doi: 10.1038/s41467-017-01609-x.10.1038/s41467-017-01609-xPMC570125429176575Lee CH, Lee KH, Jang AH, Yoo CG. The impact of autophagy on the cigarette smoke extract-induced apoptosis of bronchial epithelial cells. Tuberc Respir Dis (Seoul). 2017;80(1):83–89. doi: 10.4046/trd.2017.80.1.83.10.4046/trd.2017.80.1.83PMC525634528119751Mizumura K, Cloonan S, Choi ME, Hashimoto S, Nakahira K, Ryter SW, et al. Autophagy: friend or foe in lung disease? Ann Am Thorac Soc. 2016;13(Suppl 1):S40–S47.PMC546616027027951Moreno-Blas D, Gorostieta-Salas E, Castro-Obregon S. Connecting chaperone-mediated autophagy dysfunction to cellular senescence. Ageing Res Rev. 2018;41:34–41. doi: 10.1016/j.arr.2017.11.001.10.1016/j.arr.2017.11.00129113832Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, Hosaka Y, Ichikawa A, Saito N, Kadota T, Sato N, Kurita Y, Kobayashi K, Ito S, Utsumi H, Wakui H, Numata T, Kaneko Y, Mori S, Asano H, Yamashita M, Odaka M, Morikawa T, Nakayama K, Iwamoto T, Imai H, Kuwano K. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. doi: 10.1038/s41467-019-10991-7.10.1038/s41467-019-10991-7PMC663712231316058Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H, Yuan J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A. 2019;116(8):2996–3005. doi: 10.1073/pnas.1819728116.10.1073/pnas.1819728116PMC638671630718432Lee JJ, Ishihara K, Notomi S, Efstathiou NE, Ueta T, Maidana D, Chen X, Iesato Y, Caligiana A, Vavvas DG. Lysosome-associated membrane protein-2 deficiency increases the risk of reactive oxygen species-induced ferroptosis in retinal pigment epithelial cells. Biochem Biophys Res Commun. 2020;521(2):414–419. doi: 10.1016/j.bbrc.2019.10.138.10.1016/j.bbrc.2019.10.138PMC693540131672277Ho PW, Leung CT, Liu H, Pang SY, Lam CS, Xian J, et al. Age-dependent accumulation of oligomeric SNCA/alpha-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA) Autophagy. 2020;16(2):347–370. doi: 10.1080/15548627.2019.1603545.10.1080/15548627.2019.1603545PMC698445430983487