We introduce Sparse exact low resolution electromagnetic tomography (eLORETA), a novel method for estimating a nonparametric solution to the source localization problem. Its goal is to generate a sparser solution compared to other source localization methods including eLORETA while benefitting from the latter's superior source localization accuracy.Sparse eLORETA starts by reducing the source space of the Lead Field Matrix using structured sparse Bayesian learning from which a Reduced Lead Field Matrix is constructed, which is used as input to eLORETA.With Sparse eLORETA, source sparsity can be traded against signal fidelity; the proposed optimum is shown to yield a much sparser solution than eLORETA's with only a slight loss in signal fidelity.When pursuing a data-driven approach, for cases where it is difficult to choose specific regions of interest, or when subsequently a connectivity analysis is performed, source space reduction could prove beneficial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ac2bb6 | DOI Listing |
Neurophotonics
January 2025
University of Illinois Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States.
Significance: Stimulus-evoked intrinsic optical signal (IOS) changes in retinal photoreceptors are critical for functional optoretinography (ORG). Optical coherence tomography (OCT), with its depth-resolved imaging capability, has been actively explored for IOS imaging of retinal photoreceptors. However, recent OCT studies have reported conflicting results regarding light-induced changes in the photoreceptor outer segments (OSs), with both elongation and shrinkage being observed.
View Article and Find Full Text PDFSmall Methods
January 2025
Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun, 130024, China.
The clean conversion of CO is a strategic issue for addressing global climate change and advancing energy transformation. While the current clean CO conversion is limited to the H pyrolysis process, using HO as a proton source is more promising and sustainable. A microplasma discharge method is developed, driven by electricity, and utilized for CO conversion with HO.
View Article and Find Full Text PDFMass Spectrom Rev
January 2025
School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
Ionization and fragmentation are at the core of mass spectrometry. But they are not necessarily separated in space, as in-source fragmentation can also occur. Here, we survey the literature published since our 2005 review on the internal energy and fragmentation in electrospray ionization sources.
View Article and Find Full Text PDFBMC Public Health
January 2025
Ministère de la Santé et de l'Action Sociale (MHSA), Dakar, Senegal.
Introduction: In Senegal, the Routine Health Information System (RHIS) captures the majority of data from the Ministry of Health and Social Action (MHSA) public structures and very little health data from the private sector and other ministerial departments. Quality data strengthens the validity and reliability of research results. Common areas of data quality include accuracy, completeness, consistency, credibility, and timeliness.
View Article and Find Full Text PDFSci Rep
January 2025
Science and Technology on Vacuum and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, 730000, China.
The Laser Interferometer Space Antenna (LISA) mission is designed to detect space gravitational wave sources in the millihertz band. A critical factor in the success of this mission is the residual acceleration noise metric of the internal test mass (TM) within the ultra-precise inertial sensors. Existing studies indicate that the coupling effects of residual gas and temperature gradient fluctuations significantly influence this metric, primarily manifesting as the radiometer effect and the outgassing effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!