The "FeMo cofactors" in biological nitrogenase play a decisive role in nitrogen reduction. Herein, a novel bionic Fe/Mo bimetallene was applied in photocatalytic nitrogen reduction. The surface coating Fe/Mo bimetallene of BiMoWO (BMWO) nanocrystals could effectively promote the separation and transportation of photogenerated carriers by multi-electron redox reactions and deliver 2.8 times longer photo-carrier lifetime. Consequently, the nitrogen fixation activity of Fe/Mo bimetallene-coated BMWO nanocrystal photocatalyst was obviously enhanced (218.93 μmol gh), which was about 4.8 times that of unmodified BMWO nanocrystals. This work provides a novel approach to design bionic Fe/Mo bimetallene-modified inorganic semiconductor photocatalysts for nitrogen reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.09.078 | DOI Listing |
BMC Plant Biol
January 2025
Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.
The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:
Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China. Electronic address:
Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address:
The control of internal pollution was important throughout the restoration of the lake, especially the removal of sediment internal nitrogen. Experiments involving incubation were conducted in this study to investigate the effects of iron remediation on nitrogen in both water and sediment. Adding iron with varying dosage had different effects on the nutrients content and other properties of water and sediment in remediation.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China.
In order to explore the water and fertilizer requirements of eggplants in the western oasis of the river, the experiment was conducted in Minle County of Gansu Province in 2022 and 2023 under three water stress gradients and three nitrogen application levels: (1) moderate water stress (W, 50-60% in field water capacity [FC]), mild water stress (W, 60-70% in FC), and full irrigation (W, 70-80% in FC); (2) low nitrogen (N, 215 kg·ha), medium nitrogen (N, 270 kg·ha), and high nitrogen (N, 325 kg·ha). Moderate and mild water stress were applied during eggplant flowering and fruiting while full irrigation was provided during the other growth stages; a control class (CK) was established with full irrigation throughout the whole plant growth without nitrogen application. This study investigated the effects of water-saving and nitrogen reduction on the yield, quality, and water-nitrogen use efficiency of eggplants in a cold and arid environment in the Hexi Oasis irrigation area of China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!