Nonlinear rheology of cellular networks.

Cells Dev

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 8, 01187 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence, Physics of Life, TU Dresden, Dresden 01307, Germany. Electronic address:

Published: December 2021

Morphogenesis depends crucially on the complex rheological properties of cell tissues and on their ability to maintain mechanical integrity while rearranging at long times. In this paper, we study the rheology of polygonal cellular networks described by a vertex model in the presence of fluctuations. We use a triangulation method to decompose shear into cell shape changes and cell rearrangements. Considering the steady-state stress under constant shear, we observe nonlinear shear-thinning behavior at all magnitudes of the fluctuations, and an even stronger nonlinear regime at lower values of the fluctuations. We successfully capture this nonlinear rheology by a mean-field model that describes the tissue in terms of cell elongation and cell rearrangements. We furthermore introduce anisotropic active stresses in the vertex model and analyze their effect on rheology. We include this anisotropy in the mean-field model and show that it recapitulates the behavior observed in the simulations. Our work clarifies how tissue rheology is related to stochastic cell rearrangements and provides a simple biophysical model to describe biological tissues. Further, it highlights the importance of nonlinearities when discussing tissue mechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cdev.2021.203746DOI Listing

Publication Analysis

Top Keywords

cell rearrangements
12
nonlinear rheology
8
cellular networks
8
vertex model
8
mean-field model
8
cell
6
model
5
nonlinear
4
rheology cellular
4
networks morphogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!