Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heart valve disease is associated with high morbidity and mortality worldwide resulting in hundreds of thousands of heart valve replacements each year. Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction has led to the failure of TEHVs in preclinical studies. As native unmodified hyaluronic acid (HA) is known to promote healthy tissue development in native heart valves, we hypothesize that adding unmodified HA to fibrin-based scaffolds common to tissue engineering will reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a custom high-throughput culture system, we found that incorporating HA into millimeter-scale fibrin-based cell-populated scaffolds increases initial fiber diameter and cell-scaffold interactions, causing a cascade of mechanical, morphological, and cellular responses. These changes lead to higher levels of scaffold compaction and stiffness, increased cell alignment, and less bundling of fibrin fibers by the cells during culture. These effects significantly reduce scaffold retraction and total contractile force each by around 25%. These findings increase our understanding of how HA alters tissue remodeling and could inform the design of the next generation of tissue engineered heart valves to help reduce retraction. STATEMENT OF SIGNIFICANCE: Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction induced by excessive myofibroblast activation has led to failure in preclinical studies. Developing valves are rich in hyaluronic acid (HA), which helps maintain a physiological environment for tissue remodeling without retraction. We hypothesized that adding unmodified HA to TEHVs would reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a high-throughput tissue culture platform, we demonstrate that HA incorporation into a fibrin-based scaffold can significantly reduce tissue retraction and total contractile force by increasing fiber bundling and altering cell-mediated matrix remodeling, therefore increasing gel density and stiffness. These finding increase our knowledge of native HA's effects within the extracellular matrix, and provide a new tool for TEHV design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627498 | PMC |
http://dx.doi.org/10.1016/j.actbio.2021.09.046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!