Background: Efforts to improve QC for multi-test analytic systems should focus on risk-based bracketed SQC strategies, as recommended in the CLSI C24-Ed4 guidance for QC practices. The objective is to limit patient risk by controlling the expected number of erroneous patient test results that would be reported over the period an error condition goes undetected.

Methods: A planning model is described to provide a structured process for considering critical variables for the development of SQC strategies for continuous production multi-test analytic systems. The model aligns with the principles of the CLSI C24-Ed4 "roadmap" and calculation of QC frequency, or run size, based on Parvin's patient risk model. Calculations are performed using an electronic spreadsheet to facilitate application of the planning model.

Results: Three examples of published validation data are examined to demonstrate the application of the planning model for multi-test chemistry and enzyme analyzers. The ability to assess "what if" conditions is key to identifying the changes and improvements that are necessary to simplify the overall system to a manageable number of SQC procedures.

Conclusions: The planning of risk based SQC strategies should align operational requirements for workload and reporting intervals with QC frequency in terms of the run size or the number of patient samples between QC events. Computer tools that support the calculation of run sizes greatly facilitate the planning process and make it practical for medical laboratories to quickly assess the effects of critical variables.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2021.09.020DOI Listing

Publication Analysis

Top Keywords

planning model
12
sqc strategies
12
risk based
8
multi-test analytic
8
analytic systems
8
clsi c24-ed4
8
patient risk
8
critical variables
8
application planning
8
model
5

Similar Publications

This study investigates the implementation of collaborative route planning between trucks and drones within rural logistics to improve distribution efficiency and service quality. The paper commences with an analysis of the unique characteristics and challenges inherent in rural logistics, emphasizing the limitations of traditional methods while highlighting the advantages of integrating truck and drone technologies. It proceeds to review the current state of development for these two technologies and presents case studies that illustrate their application in rural logistics.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the psychometric properties of the Chinese version of the Revised Indebtedness Scale (IS-R-C) in mainland China. A total of 1057 university students participated in this study using a two-wave whole-group sampling method. Sample 1, consisting of 537 participants, was used for item analysis and exploratory factor analysis (EFA) of the Revised Indebtedness Scale (IS-R).

View Article and Find Full Text PDF

The optimization of auto parts supply chain logistics plays a decisive role in the development of the automotive industry. To reduce logistics costs and improve transportation efficiency, this paper addresses the joint optimization problem of multi-vehicle pickup and delivery transportation paths under time window constraints, coupled with the three-dimensional loading of goods. The model considers mixed time windows, three-dimensional loading constraints, cyclic pickup and delivery paths, varying vehicle loads and volumes, flow balance, and time window constraints.

View Article and Find Full Text PDF

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.

View Article and Find Full Text PDF

Accurate prediction of runoff is of great significance for rational planning and management of regional water resources. However, runoff presents non-stationary characteristics that make it impossible for a single model to fully capture its intrinsic characteristics. Enhancing its precision poses a significant challenge within the area of water resources management research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!