A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling of soil gas radon as an in situ partitioning tracer for quantifying LNAPL contamination. | LitMetric

Modeling of soil gas radon as an in situ partitioning tracer for quantifying LNAPL contamination.

Sci Total Environ

Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico, 1, 00133 Rome, Italy.

Published: February 2022

In the last decades radon (Rn) has been widely proposed as a naturally occurring tracer for non-aqueous phase liquids (NAPL) in the soil. This work examines the feasibility of using soil gas data collected at some distance from the source zone for the application of the Rn deficit technique for the identification and quantification of NAPL contamination. To this end, we used a steady-state 1-D analytical solution that is based on a 3-layer model that allows to simulate the transport and distribution of Rn in the source zone, capillary fringe and overlying unsaturated soil. The analytical solution was first validated against a more detailed numerical model available in the literature. Then, a series of simulations were carried out to evaluate the vertical concentration profiles of Rn in soil gas above the source zone and in background location not impacted by NAPL. Simulation results showed that the parameters that most influence the migration and distribution of Rn in the subsurface are the distance of the soil gas probe from the source zone and, to a lower extent, the type of contamination (e.g. diesel or gasoline) and the soil type. On the basis of these results, we developed some easy-to-use nomographs to estimate the residual NAPL phase based on the observed radon deficit in soil gas and on the probe to source distance and soil and NAPL characteristics. According to the obtained results, the radon deficit technique results a feasible method for a qualitative identification of residual NAPL when radon in soil gas is measured at distances lower than 2 m from the contaminated zone. However, for an accurate quantitative estimation of the NAPL phase content, soil gas probes should be preferably located at distances lower than 1 m from the source zone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150593DOI Listing

Publication Analysis

Top Keywords

soil gas
28
source zone
20
soil
10
deficit technique
8
analytical solution
8
distance soil
8
gas probe
8
probe source
8
residual napl
8
napl phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!