A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media. | LitMetric

The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media.

Sci Total Environ

Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States; Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, United States. Electronic address:

Published: February 2022

The objective of this research was to investigate the impact of multiple-component PFAS solutions on the retention of PFOS during transport in unsaturated porous media. Surface tensions were measured to characterize the impact of co-PFAS on the surface activity of PFOS. Miscible-displacement experiments were conducted to examine the air-water interfacial adsorption of PFOS during transport in single and multi-PFAS systems. Literature data for transport of PFOS in NAPL-water systems were also investigated for comparison. A mathematical model incorporating surfactant-induced flow, nonlinear rate-limited sorption, nonlinear rate-limited fluid-fluid interfacial adsorption, and competitive adsorption at the fluid-fluid interface was used to simulate the transport of PFOS. The results indicate that the presence of co-PFAS had no measurable impact on solid-phase sorption of PFOS during transport under the extant conditions of the experiments. Conversely, the air-water interfacial adsorption of PFOS was decreased by the presence of co-PFAS during transport under unsaturated-flow conditions for relatively high input concentrations. The multiple-component Langmuir model could not predict the competitive adsorption behavior observed during transport. Conversely, competitive interactions were not observed for transport with a lower input concentration. The results indicate that the retention and transport of individual PFAS in mixtures may in some cases be impacted by the presence of co-PFAS due to competitive fluid-fluid interfacial adsorption effects. Reduced retention due to competitive interfacial-adsorption interactions has the potential to decrease PFOS retardation during transport, thereby increasing migration rates in sources zones and enhancing groundwater-pollution risks. SYNOPSIS: The impact of PFAS mixtures on the retention and transport of PFOS in unsaturated porous media is examined with a series of experiments and mathematical modeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633151PMC
http://dx.doi.org/10.1016/j.scitotenv.2021.150595DOI Listing

Publication Analysis

Top Keywords

interfacial adsorption
20
transport pfos
16
fluid-fluid interfacial
12
transport
12
unsaturated porous
12
porous media
12
pfos transport
12
presence co-pfas
12
pfos
10
impact multiple-component
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!