Cell viscosity is related to some diseases, such as diabetes, atherosclerosis, and Alzheimer's disease. These diseases can cause abnormal viscosity of the cell mitochondrial matrix. 1,4-Dihydropyridine (DHP) is an important organic compound with biological activity and is widely used in drug research. However, there are few studies on its optical properties, especially in the design of viscous fluorescent probes. In this study, a fluorescent probe for viscosity detection using 1,4-dihydropyridine as the fluorophore and indole iodide salt as the recognition group was designed and synthesized. The probe has the advantages of a deep-red emission, low cytotoxicity, good biocompatibility and excellent anti-interference ability. In addition, the probe also has the ability to target mitochondria and has been successfully applied to the detection of the viscosity response of HeLa cells and living mice, and has good clinical application potential.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1ay01206aDOI Listing

Publication Analysis

Top Keywords

fluorescent probe
8
viscosity
5
novel mitochondrial-targeting
4
mitochondrial-targeting fluorescent
4
probe
4
probe based
4
based 14-dihydropyridine
4
14-dihydropyridine visualize
4
visualize monitor
4
monitor viscosity
4

Similar Publications

Femtomolar hydrogen sulfide detection via hybrid small-molecule nano-arrays.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.

Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.

View Article and Find Full Text PDF

We designed a new cyanide sensing probe by one-step synthesis and evaluated it using UV-vis and fluorescent techniques. The active moiety of (Z)-3-(4-(methylthio) phenyl)-2-(4-nitrophenyl) acrylonitrile (NCS) demonstrated fluorescence. The probe NCS showed turn-off fluorescence in the presence of cyanide (CN¯), which has a higher selectivity and sensitivity than other anions.

View Article and Find Full Text PDF

Tetraphenylethylene-indole as a novel fluorescent probe for selective and sensitive detection of human serum albumin (HSA) in biological matrices and monitoring of HSA purity and degradation.

Talanta

December 2024

Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China.

Human serum albumin (HSA) levels in serum and urine is a crucial biomarker for diagnosing liver and kidney diseases. HSA is used to treat various disorders in clinical practice and as an excipient in the production of vaccine or protein drug, ensuring its purity essential for patient safety. However, selective and sensitive detection of HSA remains challenging due to its structural similarity with bovine serum albumin (BSA) and the inherent complexity of biological matrices.

View Article and Find Full Text PDF

High-Affinity Lectin Ligands Enable the Detection of Pathogenic Biofilms: Implications for Diagnostics and Therapy.

JACS Au

December 2024

Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.

is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.

View Article and Find Full Text PDF

Live Visualization of Calcified Bones in Zebrafish and Medaka Larvae and Juveniles Using Calcein and Alizarin Red S.

Bio Protoc

December 2024

Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan.

Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!