Augmented reality applications allow users to enrich their real surroundings with additional digital content. However, due to the limited field of view of augmented reality devices, it can sometimes be difficult to become aware of newly emerging information inside or outside the field of view. Typical visual conflicts like clutter and occlusion of augmentations occur and can be further aggravated especially in the context of dense information spaces. In this article, we evaluate how multisensory cue combinations can improve the awareness for moving out-of-view objects in narrow field of view augmented reality displays. We distinguish between proximity and transition cues in either visual, auditory or tactile manner. Proximity cues are intended to enhance spatial awareness of approaching out-of-view objects while transition cues inform the user that the object just entered the field of view. In study 1, user preference was determined for 6 different cue combinations via forced-choice decisions. In study 2, the 3 most preferred modes were then evaluated with respect to performance and awareness measures in a divided attention reaction task. Both studies were conducted under varying noise levels. We show that on average the Visual-Tactile combination leads to 63% and Audio-Tactile to 65% faster reactions to incoming out-of-view augmentations than their Visual-Audio counterpart, indicating a high usefulness of tactile transition cues. We further show a detrimental effect of visual and audio noise on performance when feedback included visual proximity cues. Based on these results, we make recommendations to determine which cue combination is appropriate for which application.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2021.3116673DOI Listing

Publication Analysis

Top Keywords

field view
20
transition cues
16
augmented reality
16
view augmented
12
proximity transition
8
narrow field
8
reality displays
8
cue combinations
8
out-of-view objects
8
proximity cues
8

Similar Publications

This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 - 3.

View Article and Find Full Text PDF

A co-registration method to validate optical coherence tomography in the breast surgical cavity.

Heliyon

January 2025

BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia.

Breast-conserving surgery accompanied by adjuvant radiotherapy is the standard of care for patients with early-stage breast cancer. However, re-excision is reported in 20-30 % of cases, largely because of close or involved tumor margins in the specimen. Several intraoperative tumor margin assessment techniques have been proposed to overcome this issue, however, none have been widely adopted.

View Article and Find Full Text PDF

Introduction The role of the condylar position in the correct functioning of the stomatognathic system has been the center of the study. Using cone-beam computed tomography (CBCT), this study looked at the three-dimensional (3D) position of the condylar bone in patients from Class I, Class II, Division 1, and Division 2. Materials and methods This cross-sectional, retrospective study was conducted using 102 CBCT records, with 34 records allocated to each category of malocclusion classification, such as dentoskeletal Class I, skeletal Class II, and dental Class II, Division 1 and 2.

View Article and Find Full Text PDF

Optical edge detection is a crucial optical analog computing method in fundamental artificial intelligence, machine vision, and image recognition, owing to its advantages of parallel processing, high computing speed, and low energy consumption. Field-of-view-tunable edge detection is particularly significant for detecting a broader range of objects, enhancing both practicality and flexibility. In this work, a novel approach-adaptive optical spatial differentiation is proposed for field-of-view-tunable edge detection.

View Article and Find Full Text PDF

[Mycology, chemical components, bioactivities, and fermentation process regulation of Sanghuang: a review].

Zhongguo Zhong Yao Za Zhi

December 2024

Mycomedicine Research Laboratory, School of Pharmaceutical Science, Hunan University of Chinese Medicine Changsha 410208, China Tertiary Research Lab of TCM Property & Efficacy,National Administration of TCM Changsha 410208, China.

Sanghuang, a famous ethnomedicine widely used in China, Japan, Korea and other countries for a long history, is produced from the dried fruiting bodies of the medical fungi belonging to Sanghuangporus. With abundant bioactive natural chemicals including polysaccharides, flavonoids, triterpenoids, and polyphenols, Sanghuang exhibits anticancer, antioxidant, blood glucose-and lipid-lowering, liver protecting, anti-inflammatory, antimicrobial, and gout symptom-relieving effects, thus demonstrating broad application and development prospects in the pharmaceutical and food fields. However, the sustainable development of Sanghuang resources is limited by the scarce stock of wild resources, the diverse original fungi of cultivated Sanghuang, the inconsistency of local standards of Sanghuang materials or products, and the lagging application of Sanghuangporus mycelia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!