Objective: To investigate whether MRI-based texture analysis improves diagnostic performance for the diagnosis of parotid gland tumors compared to conventional radiological approach.

Methods: Patients with parotid gland tumors who underwent salivary glands MRI between 2008 and 2019 were retrospectively selected. MRI analysis included a qualitative assessment by two radiologists (one of which subspecialized on head and neck imaging), and texture analysis on various sequences. Diagnostic performances including sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of qualitative features, radiologists' diagnosis, and radiomic models were evaluated.

Results: Final study cohort included 57 patients with 74 tumors (27 pleomorphic adenomas, 40 Warthin tumors, 8 malignant tumors). Sensitivity, specificity, and AUROC for the diagnosis of malignancy were 75%, 97% and 0.860 for non-subspecialized radiologist, 100%, 94% and 0.970 for subspecialized radiologist and 57.2%, 93.4%, and 0.927 using a MRI radiomics model obtained combining texture analysis on various MRI sequences. Sensitivity, specificity, and AUROC for the differential diagnosis between pleomorphic adenoma and Warthin tumors were 81.5%, 70%, and 0.757 for non-subspecialized radiologist, 81.5%, 95% and 0.882 for subspecialized radiologist and 70.8%, 82.5%, and 0.808 using a MRI radiomics model based on texture analysis of weighted sequence. A combined radiomics model obtained with all MRI sequences yielded a sensitivity of 91.5% for the diagnosis of pleomorphic adenoma.

Conclusion: MRI qualitative radiologist assessment outperforms radiomic analysis for the diagnosis of malignancy. MRI predictive radiomics models improves the diagnostic performance of non-subspecialized radiologist for the differential diagnosis between pleomorphic adenoma and Warthin tumor, achieving similar performance to the subspecialized radiologist.

Advances In Knowledge: Radiologists outperform radiomic analysis for the diagnosis of malignant parotid gland tumors, with some MRI qualitative features such as ill-defined margins, perineural spread, invasion of adjacent structures and enlarged lymph nodes being highly specific for malignancy. A radiomic model based on texture analysis of weighted images yields higher specificity for the diagnosis of pleomorphic adenoma compared to a radiologist non-subspecialized in head and neck radiology, thus minimizing false-positive pleomorphic adenoma diagnosis rate and reducing unnecessary surgical complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631014PMC
http://dx.doi.org/10.1259/bjr.20210340DOI Listing

Publication Analysis

Top Keywords

texture analysis
20
parotid gland
16
gland tumors
16
diagnosis pleomorphic
16
pleomorphic adenoma
16
diagnostic performance
12
sensitivity specificity
12
non-subspecialized radiologist
12
radiomics model
12
diagnosis
10

Similar Publications

Native banana starch (NS) has few limitations, such as poor solubility, low resistance to shear, temperature, and inconsistent retrogradation. This study investigates the effects of mono (α-amylase, pullulunase) and sequential enzymatic modifications of NS along with the application of ultrasound to enhance its functional attributes. Starch modified with α-amylase alone and along with ultrasound resulted the lowest amylose (20.

View Article and Find Full Text PDF

Flavor is the quintessential multisensory experience, combining gustatory, retronasal olfactory, and texture qualities to inform food perception and consumption behavior. However, the computations that govern multisensory integration of flavor components and their underlying neural mechanisms remain elusive. Here, we use rats as a model system to test the hypothesis that taste and smell components of flavor are integrated in a reliability-dependent manner to inform hedonic judgments and that this computation is performed by neurons in the primary taste cortex.

View Article and Find Full Text PDF

Using of low-fat emulsion gels stabilized by quinoa protein (QP) for 3D food printing was limited by their defective rheological properties. The study was to explore the feasibility of using fucoidan (FU) to improve the printability and curcumin encapsulation stability of QP emulsion gel. The gels with 0.

View Article and Find Full Text PDF

Effect of astaxanthin and carvacrol co-encapsulated emulsion and chitosan on the physicochemical, rheological, and antimicrobial properties in nitrite-free meat spread.

Food Chem

December 2024

Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:

The quality and safety of meat products are critical concerns in the food industry, and consumer demand for clean-label products is increasing. To meet these needs, this study aimed to develop a nitrite-free meat spread using an astaxanthin (0.04 wt%) and carvacrol (15 wt%) co-encapsulated emulsion (AE) and chitosan.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most lethal cancers worldwide, and its early diagnosis is critical for improving patient survival rates. However, the extraction of key information from complex medical images and the attainment of high-precision classification present a significant challenge. In the field of signal processing, texture-rich images typically exhibit periodic patterns and structures, which are manifested as significant energy concentrations at specific frequencies in the frequency domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!