A hypothesis gaining increasing popularity is that laypeople's representations of physical phenomena might be driven by internalized physical laws. In three experiments, we tested if such hypothesis holds true for the representation of gravitational motion. Participants were presented with realistic, real-scale virtual spheres falling vertically downward from about 2 m high. The spheres appeared to be made of either polystyrene or wood. In Experiment 1, participants adjusted the falling motion pattern until it appeared to be natural. In Experiment 2, they compared the perceived naturalness of vertical free falls in a vacuum with the perceived naturalness of more realistic falls characterized by the presence of air drag. In Experiment 3, they estimated the position of the sphere after a variable interval of time from the beginning of the fall. Inconsistently with predictions from physics, results showed that representations of gravitational motion were strongly affected by the implied masses of the falling objects and did not account for air drag. This provides support for the hypothesis of weight-based heuristic representations of gravitational motion against the hypothesis of the internalization of physical laws. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/xhp0000956 | DOI Listing |
Gravity has long been purported to serve a unique role in sensorimotor coordination, but the specific mechanisms underlying gravity-based visuomotor realignment remain elusive. In this study, astronauts (9 males, 2 females) performed targeted hand movements with eyes open or closed, both on the ground and in weightlessness. Measurements revealed systematic drift in hand-path orientation seen only when eyes were closed and only in very specific conditions with respect to gravity.
View Article and Find Full Text PDFCureus
December 2024
Department of Radiological Technology, Fujieda Municipal General Hospital, Fujieda, JPN.
Purpose This study aimed to clarify which positions are beneficial for patients with pathological lung diseases, such as acute respiratory distress syndrome, by obtaining lung ventilation and deformable vector field (DVF) images using Deformable Image Registration (DIR). Methods Thirteen healthy volunteers (5 female, 8 male) provided informed consent to participate to observe changes in normal lungs. DIR imaging was processed using the B-spline algorithm to obtain BH-CTVI (inhale, exhale) in four body positions (supine, prone, right lateral, left lateral) using DIR-based breath-hold CT ventilation imaging (BH-CTVI).
View Article and Find Full Text PDFJ Vis
January 2025
Neuroscience Program, University of Western Ontario, London, Ontario, Canada.
Human performance in perceptual and visuomotor tasks is enhanced when stimulus motion follows the laws of gravitational physics, including acceleration consistent with Earth's gravity, g. Here we used a manual interception task in virtual reality to investigate the effects of trajectory shape and orientation on interception timing and accuracy. Participants punched to intercept a ball moving along one of four trajectories that varied in shape (parabola or tent) and orientation (upright or inverted).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London WC2R 2LS, UK.
MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity.
View Article and Find Full Text PDFPLoS One
December 2024
Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy.
Understanding the impact of gravity on daily upper-limb movements is crucial for comprehending upper-limb impairments. This study investigates the relationship between gravitational force and upper-limb mobility by analyzing hand trajectories from 24 healthy subjects performing nine pick-and-place tasks, captured using a motion capture system. The results reveal significant differences in motor behavior in terms of planning, smoothness, efficiency, and accuracy when movements are performed against or with gravity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!