Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metabolic pathways are commonly organized by sequestration into discrete cellular compartments. Compartments prevent unfavorable interactions with other pathways and provide local environments conducive to the activity of encapsulated enzymes. Such compartments are also useful synthetic biology tools for examining enzyme/pathway behavior and for metabolic engineering. Here, we expand the intracellular compartmentalization toolbox for budding yeast () with virus-like particles (MPyV VLPs). The MPyV system has two components: VP1 which self-assembles into the compartment shell and a short anchor, VP2C, which mediates cargo protein encapsulation via binding to the inner surface of the VP1 shell. Destabilized green fluorescent protein (GFP) fused to VP2C was specifically sorted into VLPs and thereby protected from host-mediated degradation. An engineered VP1 variant displayed improved cargo capture properties and differential subcellular localization compared to wild-type VP1. To demonstrate their ability to function as a metabolic compartment, MPyV VLPs were used to encapsulate myo-inositol oxygenase (MIOX), an unstable and rate-limiting enzyme in d-glucaric acid biosynthesis. Strains with encapsulated MIOX produced ∼20% more d-glucaric acid compared to controls expressing "free" MIOX─despite accumulating dramatically less expressed protein─and also grew to higher cell densities. This is the first demonstration in yeast of an artificial biocatalytic compartment that can participate in a metabolic pathway and establishes the MPyV platform as a promising synthetic biology tool for yeast engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689640 | PMC |
http://dx.doi.org/10.1021/acssynbio.1c00045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!