Objective: Cellular heterogeneity is regarded as a major factor affecting treatment response and resistance in malignant melanoma. Recent developments in single-cell sequencing technology have provided deeper insights into these mechanisms.

Methods: Here, we analyzed a -mutant melanoma cell line by single-cell RNA-seq under various conditions: cells sensitive to BRAF inhibition with BRAF inhibitor vemurafenib and cells resistant to BRAF inhibition with vemurafenib alone or vemurafenib in combination with the MEK1/2 inhibitors cobimetinib or trametinib. Dimensionality reduction by t-distributed stochastic neighbor embedding and self-organizing maps identified distinct trajectories of resistance development clearly separating the 4 treatment conditions in cell and gene state space.

Results: Trajectories associated with resistance to single-agent treatment involved cell cycle, extracellular matrix, and de-differentiation programs. In contrast, shifts detected in double-resistant cells primarily affected translation and mitogen-activated protein kinase pathway reactivation, with a small subpopulation showing markers of pluripotency. These findings were validated in pseudotime analyses and RNA velocity measurements.

Conclusions: The single-cell transcriptomic analyses reported here employed a spectrum of bioinformatics methods to identify mechanisms of melanoma resistance to single- and double-agent treatments. This study deepens our understanding of treatment-induced cellular reprogramming and plasticity in melanoma cells and identifies targets of potential relevance to the management of treatment resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763000PMC
http://dx.doi.org/10.20892/j.issn.2095-3941.2021.0267DOI Listing

Publication Analysis

Top Keywords

melanoma cell
8
braf inhibition
8
resistance
6
melanoma
5
treatment
5
single-cell
4
single-cell trajectories
4
trajectories melanoma
4
cell
4
cell resistance
4

Similar Publications

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from DB-14 Isolated from Flower.

J Microbiol Biotechnol

January 2025

Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.

is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .

View Article and Find Full Text PDF

Neoadjuvant immunotherapy represents a pioneering approach in the preoperative treatment of cancer, offering novel avenues for tumor reduction and improved patient outcomes by modulating the immune response. This study investigated neoadjuvant immunotherapy using intratumoral administration of mannan-BAM, Toll-like receptor ligands, and antiCD40 antibody (MBTA therapy) followed by surgery in murine models of mouse tumor tissue (MTT) pheochromocytoma, B16-F10 melanoma, and 4T1 and E0771.lmb mammary carcinomas.

View Article and Find Full Text PDF

Comprehensive Breslow thickness (BT)-based analysis to identify biological mechanisms associated with melanoma pathogenesis.

Int Immunopharmacol

January 2025

Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China. Electronic address:

Breslow thickness (BT), a parameter measuring the depth of invasion of abnormally proliferating melanocytes, is a key indicator of melanoma severity and prognosis. However, the mechanisms underlying the increase in BT remain elusive. Utilizing data from The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma (SKCM), we identified a set of BT-related molecules and analyzed their expression and genomic heterogeneity across pan-cancerous and normal tissues.

View Article and Find Full Text PDF

Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!