With the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential. Given the significance of CSCs in tumor initiation, expansion, relapse, resistance, and metastasis, studies should investigate and discover effective anticancer agents that can not only inhibit the proliferation of differentiated tumor cells but also reduce the tumorigenic capability of CSCs. Thus, new therapies must be discovered to treat and prevent this severely hazardous disease of human beings. The success of platinum complexes in cancer treatment has laid the basic foundation for the utilization of metal complexes in the treatment of malignant cancers, in particular the highly aggressive triple-negative breast cancer. Importantly, metal complexes currently have diverse and versatile competences in the therapeutic targeting of CSCs. The anti-CSC properties provide a strong impetus for the development of novel metal-based compounds for the targeting of CSCs and treatment of chemotherapy-resistant and relapsed tumors. In this review, we provide the latest advances in metal complexes including platinum, ruthenium, osmium, iridium, manganese, cobalt, nickel, copper, zinc, palladium, and tin complexes against breast CSCs obtained over the past decade, with pertinent literature including those published until 2021.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt02909f | DOI Listing |
Inorg Chem
January 2025
Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
Two novel 3D inorganic-organic hybrids based on [VO]/[VO] clusters, [Cu(bbpy)(VO)]·3HO () and [CuAg(pty)(VO)]·HO () (bbpy = 3,5-bis(1-benzimidazole) pyridine, pty = 4'-(4″-pyridyl)-2,2':6',2″-terpyridine), were isolated in the same POV/Cu/N-heterocycle ligand reaction systems. Hybrids and possess novel three-dimensional bimetallic frameworks derived from [VO]/[VO] clusters and Cu-organic complexes. In , bbpy ligands are grafted by Cu to a grid ribbon 2D sheet, which are connected with benzene-like [VO] to yield a 3D framework.
View Article and Find Full Text PDFACS Nano
January 2025
Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.
View Article and Find Full Text PDFFuture Med Chem
January 2025
Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R., China.
The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria.
View Article and Find Full Text PDFChempluschem
January 2025
Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland.
This review highlights how a Ir(III) and Ru(II) coordination complexes can change theirs cytotoxic activity by interacting with a biomolecules such as deoxyribonucleic acid (DNA), human albumins (HSA), nicotinamide adenine dinucleotide (NADH), and glutathione (GSH). We have selected biomolecules (DNA, NADH, GSH, and HSA) based on their significant biological roles and importance in cellular processes. Moreover, this review may provide useful information for the development of new half-sandwich Ir(III) and Ru(II) complexes with desired properties and relevant biological activities.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia.
The solvent effect on the indirect J(M-P) spin-spin coupling constant in phosphine selenoether -substituted acenaphthene complexes LMCl is studied at the PP86 level of nonrelativistic and four-component relativistic density functional theory. Depending on the metal, the solvent effect can amount to as much as 50% or more of the total -value. This explains the previously found disagreement between the J(Hg-P) coupling in LHgCl, observed experimentally and calculated without considering solvent effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!