Chitosan can associate in the presence of polyphosphates into insoluble hydrogels capable of drug encapsulation and safe and efficient release. On the one hand, chitosan hydrogels were synthesized using the phytate anion as a crosslinking agent and were characterized by employing dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). On the other hand, an effective chitosan-phytate model with atomistic details was created to examine the underlying physical crosslinking pattern, and the structure and dynamics of the chitosan-phytate complex were systematically investigated by using molecular dynamics (MD) simulations. To harbor the crosslinker potential for obtaining chitosan-based hydrogels, the impact of the phytate concentration and the functional groups of the chitosan on the reticulation process was addressed. The phytate association was determined by the phosphates' capacity for H-bonding to the amine and hydroxyl groups belonging to two consecutive glucosidic units. The physical crosslinking pattern was determined by the number of chitosan chains bound by one phytate anion and the phytate orientation relative to the glucopyranose neighbors. Cross-linking of two up to six chitosan chains mediated by a phytate anion represented favorable states, and the number distribution of cross-linked chains depended on the phytate concentration. The circular distribution of the cross-linkable phosphates regulated the nearly isotropic orientation of the chitosan chains and phytate at the junction, and the variety of topological crosslinking demonstrated the phytate ion's potential for developing chitosan-based hydrogels with improved structural attributes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp02961dDOI Listing

Publication Analysis

Top Keywords

phytate anion
12
chitosan chains
12
phytate
10
investigated molecular
8
molecular dynamics
8
dynamics simulations
8
physical crosslinking
8
crosslinking pattern
8
chitosan-based hydrogels
8
phytate concentration
8

Similar Publications

Phytic Acid Delays the Senescence of Fruit by Regulating Antioxidant Capacity and the Ascorbate-Glutathione Cycle.

Int J Mol Sci

December 2024

Engineering Research Center for Fruit Crops of Guizhou Province, Engineering Technology Research Centre for Rosa Roxburghii of National Forestry and Grassland Adminstratio, College of Agriculture, Guizhou University, Guiyang 550025, China.

fruit has a short postharvest shelf life, with rapid declines in quality and antioxidant capacity. This research assessed how phytic acid affects the antioxidant capacity and quality of fruit while in the postharvest storage period and reveals its potential mechanism of action. The findings suggested that phytic acid treatment inhibits the production of malondialdehyde (MDA) and enhances the activities and expressions of glutathione peroxidase (GPX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) while decreasing the generation of superoxide anions (O) and hydrogen peroxide (HO).

View Article and Find Full Text PDF

Encapsulation of hydrophobically ion-paired teduglutide in nanoemulsions: Effect of anionic counterions.

Food Chem

January 2025

Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

This study presents a novel method for encapsulating the bioactive peptide teduglutide to enhance its oral bioavailability using O/W nanoemulsion (NE). Recombinant teduglutide (rTGT), produced in E. coli with 93 % purity, was hydrophobically modified through ion-pairing with phytic acid (PA) and sodium dodecyl sulfate (SDS).

View Article and Find Full Text PDF

Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.

View Article and Find Full Text PDF

Expanded Negative Electrostatic Network-Assisted Seawater Oxidation and High-Salinity Seawater Reutilization.

ACS Nano

January 2025

College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.

View Article and Find Full Text PDF

Phytate in plants (inositol phosphates, InsPs) affects mineral bioavailability. However, methods for their quantification may lead to variable results, and some are nonspecific (spectrophotometric techniques). In this study, ion-pair high-performance liquid chromatography (HPLC) was coupled with post-column derivatization to allow fluorescence detection (FLD, λ324/λ364 nm) of InsPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!