The aggregation of the amyloid beta (Aβ) protein into plaques is a pathological feature of Alzheimer's disease (AD). While amyloid aggregates have been extensively studied in vitro, their structural aspects and associated chemistry in the brain are not fully understood. In this report, we demonstrate, using infrared spectroscopic imaging, that Aβ plaques exhibit significant heterogeneities in terms of their secondary structure and phospholipid content. We show that the capabilities of discrete frequency infrared imaging (DFIR) are ideally suited for characterization of amyloid deposits in brain tissues and employ DFIR to identify nonplaque β-sheet aggregates distributed throughout brain tissues. We further demonstrate that phospholipid-rich β-sheet deposits exist outside of plaques in all diseased tissues, indicating their potential clinical significance. This is the very first application of DFIR toward a characterization of protein aggregates in an AD brain and provides a rapid, label-free approach that allows us to uncover β-sheet heterogeneities in the AD, which may be significant for targeted therapeutic strategies in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933041PMC
http://dx.doi.org/10.1021/acs.jpclett.1c02306DOI Listing

Publication Analysis

Top Keywords

infrared spectroscopic
8
spectroscopic imaging
8
β-sheet aggregates
8
alzheimer's disease
8
brain tissues
8
label-free infrared
4
imaging reveals
4
reveals heterogeneity
4
β-sheet
4
heterogeneity β-sheet
4

Similar Publications

Fourier Transform Infrared Spectroscopy Analysis as a Tool to Address Aβ Impact on Extracellular Vesicles.

Molecules

January 2025

Neuroscience and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.

Alzheimer's disease is a challenge in modern healthcare due to its complex etiology and increasing prevalence. Despite advances, further understanding of Alzheimer's disease pathophysiology is needed, particularly the role of Aβ neurotoxic peptide. Fourier transform infrared spectroscopy (FTIR) has shown potential as a screening tool for several pathologies, including Alzheimer's disease.

View Article and Find Full Text PDF

The glycine nitrate procedure (GNP) is a method that proved to be the easiest and most effective method for controlling the composition and morphology during the synthesis of CoRMoO (R = Ho, Yb, Gd). This method of the combustion process achieves control of stoichiometry, homogeneity, and purity. Metal nitrates and glycine were mixed in the appropriate stoichiometric ratios to produce CoRMoO (R = Ho, Yb, Gd).

View Article and Find Full Text PDF

Microwave Dielectric Properties and Defect Behavior of xTiO-(1-x)SiO Glass.

Materials (Basel)

January 2025

China Building Materials Academy, Beijing 100024, China.

xTiO-(1-x)SiO (x = 2.9~8.2 mol%) glass specimens were synthesized using the flame hydrolysis technique.

View Article and Find Full Text PDF

The fast detection of Extra Virgin Olive Oil (EVOO) adulteration with poorer quality and lower price vegetable oils is important for the protection of consumers and the market of olive oil from fraudulent activities, the latter exhibiting an increasing trend worldwide during the last few years. In this work, two optical spectroscopic techniques, namely, Laser-Induced Breakdown Spectroscopy (LIBS) and UV-Vis-NIR absorption spectroscopy, are employed and are assessed for EVOO adulteration detection, using the same set of olive oil samples. In total, 184 samples were studied, including 40 EVOOs and 144 binary mixtures with pomace, soybean, corn, and sunflower oils, at various concentrations (ranging from 10 to 90% /).

View Article and Find Full Text PDF

The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!