Xylitol is a widely used natural sweetener for the reduction of excessive sugar consumption. However, concerns of xylitol consumption existed as it is a highly permeable substance in the colon that could cause diarrhea and other adverse symptoms. To assess the relationship between xylitol dosage and diarrhea, especially the influences of diarrhea on physiological characteristics, the immune system, and gut microbiota in rats, the control, low-dose (L), medium-dose (M), and high-dose (H) groups were fed with 0, 1, 3, and 10% of xylitol, respectively, correspondingly for 15 days, followed by a 7-day recovery. Only medium- and high-dose xylitol would cause diarrhea in rats. Quantitative imaging of colonic tissue and the expression levels of proinflammatory factors revealed a higher degree of immune responses in the rats from H groups but statistically stable in M groups, despite that light diarrhea was observed. A shift of the gut microbiota composition was observed in the rats from H groups, including significant decreases of genera and and a notable increase and colonization of , accompanied with changes of short-chain fatty acid production. Tolerance and adaptation to xylitol consumption were observed in a dose-dependent manner. Our findings demonstrate that diarrhea caused by the high dosage of xylitol can exert distinctive changes on gut microbiota and lay the foundation to explore the mechanism underlying the shift in gut microbiota composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.1c03720 | DOI Listing |
Metab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFAging Dis
January 2025
Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Aging is a complex and universal process marked by gradual functional declines at the cellular and tissue levels, often leading to a range of aging-related diseases such as diabetes, cardiovascular diseases, and cancer. Delaying the aging process can help prevent, slow down, and alleviate the severity of these various conditions, enhancing overall health and well-being. Alpha-glucosidase inhibitors (AGIs) are a class of widely used antidiabetic drugs that inhibit alpha-glucosidase in the small intestinal mucosa, delaying carbohydrate absorption and reducing postprandial hyperglycemia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
VIB-UGent Center for Inflammation Research, Ghent, Belgium.
Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland.
Purpose: Graves' disease (GD) and Graves' orbitopathy (GO) are multifactorial disorders with links to the gut microbiome and autoimmunity. It is observed that patients with GD exhibit altered gut microbiome diversity. However, little is known about the role of oral microbiota in GD and GO.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Background: Consuming prebiotics demonstrated therapeutic potential against obesity, as illustrated by our previous study on xylooligosaccharide (XOS), revealing that XOS reduced adiposity, diminished systemic inflammation, and restored cognitive function in obese insulin-resistant rats through the gut-brain axis. Fresh bananas at various ripening stages are being transformed into snacks, indicating potential as prebiotic-based treats enriched with fructooligosaccharide and inulin. Despite those findings, there remains a notable gap in the literature concerning the impact of these prebiotic-based snacks on brain inflammation, reactive oxygen species (ROS) production, and cognitive function in high-fat diet (HFD)-induced obese rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!