The impact of low water concentration of strongly hydrogen-bonded water molecules on the dynamical properties of amorphous terfenadine (TFD) is investigated through complementary molecular dynamics (MD) simulations and dielectric relaxation spectroscopy (DRS) experiments. In this article, we especially highlight the important role played by some residual water molecules in the concentration of 1-2% (w/w) trapped in the TFD glassy matrix, which are particularly difficult to remove experimentally without a specific heating/drying process. From MD computations and analyses of the hydrogen bonding (HB) interactions, different categories of water molecules are revealed and particularly the presence of strongly HB water molecules. These latter localize themselves in small pockets in empty spaces existing in between the TFD molecules due to the poor packing of the glassy state and preferentially interact with the polar groups close to the flexible central part of the TFD molecules. We present a simple model which rationalizes at the molecular scale the effect of these strongly HB water molecules on dynamics and how they give rise to a supplementary relaxation process (namely process S) which is detected for the first time in the glassy state of TFD annealed at room temperature while this process is completely absent in a non-annealed glass. It also explains how this supplementary relaxation is coupled with the intramolecular motion (namely process γ) of the very flexible central part of the TFD molecule. The present findings help to understand more generally the microscopic origin of the secondary relaxations often detected by DRS in the glassy states of molecular compounds for which the exact nature is still debated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c06087DOI Listing

Publication Analysis

Top Keywords

water molecules
24
impact low
8
concentration hydrogen-bonded
8
hydrogen-bonded water
8
molecules
8
molecules dynamics
8
amorphous terfenadine
8
molecular dynamics
8
dynamics simulations
8
simulations dielectric
8

Similar Publications

Surface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.

View Article and Find Full Text PDF

Introduction: Studies have shown that blood biomarkers can differentiate dementia disorders. However, the diagnosis of dementia still relies primarily on cerebrospinal fluid and imaging modalities. The new disease-modifying treatments call for more widely applicable biomarkers.

View Article and Find Full Text PDF

The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view.

View Article and Find Full Text PDF

Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf.

View Article and Find Full Text PDF

Tunning valence state of cobalt centers in Cu/Co-CoO for significantly boosting water-gas shift reaction.

Nat Commun

January 2025

Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.

Dual active sites with synergistic valence state regulation under oxidizing and reducing conditions are essential for catalytic reactions with step-wise mechanisms to modulate the complex adsorption sites of reactant molecules on the surfaces of heterogeneous catalysts with maximized catalytic performances, but it has been rarely explored. In this work, uniformly dispersed CuCo alloy and CoO nanosheet composite catalysts with dual active sites are constructed, which shows huge boost in activity for catalyzing water-gas shift reaction (WGSR), with a record high reaction rate reaching 204.2 μmol g s at 300 °C for CuCoO amongst the reported Cu-based and Co-based catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!