Background/aims: The moust symptoms of piglets infected with Encephalomyocarditis virus (EMCV) are related to breeding difficulty, circulation insufficiency, depression and occurrence of high lethality. An increase of tryptophan metabolism in the periphery and in the central nervous system (CNS) in human and non-human subjects with inflammatory diseases has been suggested. We investigated an alterations of tryptophan metabolite i.e. kynurenic acid (KYNA) level in the serum of piglets after EMC virus infection. In addition, we investigated the markers of immune stimulation i.e. neopterin and β2-microglobulin.
Methods: KYNA was determined by high performance liquid chromatography method, while neopterin and β2-microglobulin by ELISA method. Piglets with an age of 8 weeks were infected intranasal and orally with the EMC virus. Blood samples were collected before virus inoculation at day 0 (control) and at 1, 2, 3 and 4 days post inoculation (DPI) and piglets as control subjects were used, too.
Results: In EMCV infected piglets we observed a time dependent alteration of investigated parameters. KYNA level increased significantly and at 3 DPI was 341% of CO, p<0.001 and at 4 DPI an enhancement was 242% of CO, p<0.001, respectively. Neopterin increased moderately after EMCV infection and at 4 DPI was 130% of CO, p<0.05. Serum β2-microglobulin was slightly lowered and at 4 DPI was 86% of CO, p<0.05. Present data indicate an marked increase of kynurenine metabolism in the periphery after EMCV infection and an moderate activation of immune system.
Conclusion: A marked increase of KYNA and a moderate enhancement of neopterin indicate sensibility of kynurenine metabolism to EMCV infection. Lowering of ß2-microgobulin might relate to development of events leading to the lethality. We suggest that due to viral infection an increase of KYNA might contribute to the inpairment of organs in the periphery and CNS function and might participate by sudden death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33594/000000434 | DOI Listing |
Alterations in the kynurenine pathway, and in particular the balance of neuroprotective and neurotoxic metabolites, have been implicated in the pathophysiology of Major Depressive Disorder (MDD) and antidepressant treatment response. In this study, we examined the relationship between changes in kynurenine pathway activity (Kynurenine/Tryptophan ratio), focusing on the balance of neuroprotective-to neurotoxic metabolites (Kynurenic Acid/Quinolinic Acid and Kynurenic Acid/3-Hydroxykynurenine ratios), and response to 8 weeks of selective serotonin reuptake inhibitor (SSRI) treatment, including early changes four weeks after SSRI initiation. Additionally, we examined relationships between kynurenine metabolite ratios and three promising biomarkers of depression and antidepressant response: amygdala/hippocampal volume, and glutamate metabolites in the anterior cingulate cortex.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary.
Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Laboratory of Biotechnology, National Higher School of Biotechnology, Ville Universitaire (University of Constantine 3), Ali Mendjeli, BP E66, Constantine 25100, Algeria.
Kynurenine aminotransferase II (KAT-II) is a target for treating several diseases characterized by an excess of kynurenic acid (KYNA). Although KAT-II inactivators are available, they often lead to adverse side effects due to their irreversible inhibition mechanism. This study aimed to identify potent and safe inhibitors of KAT-II using computational and in vitro approaches.
View Article and Find Full Text PDFBiomolecules
January 2025
Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria.
In this article, we focus on kynurenic acid metabolism in neuropsychiatric disorders and the biochemical processes involved in memory and cognitive impairment, followed by different approaches in the fight against dementia. Kynurenic acid-a biochemical part of L-tryptophan catabolism-is synthesized from L-kynurenine by kynurenine aminotransferases. Experimental pharmacological studies have shown that elevated levels of kynurenic acid in the brain are associated with impaired learning and that lowering kynurenic acid levels can improve these symptoms.
View Article and Find Full Text PDFPediatr Res
January 2025
Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
Background: Preterm birth affects approximately one in every ten neonates. The clinical outcomes depend on care and management factors, including the birth delivery method and the use of antibiotics.
Methods: This observational cohort study determined antimicrobial peptides, proteases, metabolomic, and microbiome profiles in fecal samples collected from 20 preterm and nine full-term neonates 48 h after birth.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!