Over millions of years, nature has created complex hierarchical structures with exceptional mechanical properties. The nacre of various seashells is an example of such structures, which is formed out of a mainly inorganic mineral with organic material inclusions in a layered arrangement. Due to its high impact-resisting mechanical properties, these structures have been widely investigated and mimicked in artificial nacre-type composite materials. The artificial creation of nacre analogues for future applications requires an accurate understanding of their mechanical properties on the length scale of the nanoscale composite components. Here, we present an in-depth AFM study of the mechanical properties of Pāua nacre (Haliotis iris, 'rainbow abalone') and quantify the elastic modulus as well as related energy scales of both its main nanoscale constituents. We use AFM-based nano-indentation compared to standard micro/nano-indentation, which enables the direct determination of the mechanical properties of the biopolymer layer in nacre, including plastic and elastic energies during indentation. By combining three different AFM-based mechanical characterization methods we affirm the quantitativeness of our mechanical measurements and show that the organic layers have about half the elastic modulus of the inorganic aragonite regions. The obtained results reveal the detailed mechanical properties of the hierarchical structure of nacre and provide a strategy for accurately testing nanoscale mechanical properties of advanced composite materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr03469cDOI Listing

Publication Analysis

Top Keywords

mechanical properties
32
mechanical
10
nanoscale mechanical
8
properties
8
properties pāua
8
pāua nacre
8
composite materials
8
elastic modulus
8
nacre
6
in-depth atomic
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!