Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide materials are a group of prospective candidates due to their superior room-temperature multiferroic response. Here, an ultrathin BiFeMnO layered supercell (BFMO322 LS) structure was deposited on an LaAlO (LAO) (001) substrate using pulsed laser deposition. Microstructural analysis suggests that a layered supercell (LS) structure consisting of two-layer-thick Bi-O slabs and two-layer-thick Mn/Fe-O octahedra slabs was formed on top of the pseudo-perovskite interlayer (IL). A robust saturation magnetization value of 129 and 96 emu cm is achieved in a 12.3 nm thick film in the in-plane (IP) and out-of-plane (OP) directions, respectively. The ferromagnetism, dielectric permittivity, and optical bandgap of the ultrathin BFMO films can be effectively tuned by thickness and morphology variation. In addition, the anisotropy of all ultrathin BFMO films switches from OP dominating to IP dominating as the thickness increases. This study demonstrates the ultrathin BFMO film with tunable multifunctionalities as a promising candidate for novel integrated spintronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr04975e | DOI Listing |
J Acoust Soc Am
December 2024
School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070, China.
The high electrical output performance of the phononic crystal (PnC)-based piezoelectric energy harvesting (PEH) system is of great research value in self-powered applications. This work presents the effect of incomplete line defect size on elastic wave energy localization and harvesting. The results show that for a given 7 × 5 supercell when the incomplete line defect reaches the second to sixth layer, the energy localization and harvesting performance show a changing trend of first increasing and then decreasing; when the incomplete line defect reaches the 4th, 5th, 3rd, 2nd, and 6th layers of the supercell, respectively, the performance of PEH systems shows a trend from large to small.
View Article and Find Full Text PDFThe parity of a particle number is a new degree of freedom for manipulating metasurface, while its influence on non-local metasurfaces remains an unresolved and intriguing question. We propose a metasurface consisting of periodically arranged infinite-long cylinders made from multiple layers of SiO and WS. The cylinder exhibits strong backward scattering due to the overlapping magnetic dipole and electric quadrupole resonances.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait.
Moiré magnets have emerged as intriguing platforms for hosting exotic magnetic states due to the competing interactions within these materials. Recent experiments have reported noncollinear magnetic states in moiréCrI3, particularly focusing on twisted double bilayer (tDB) and double trilayer (tDT) configurations. However, atomistic simulations of moiréCrI3have largely been limited to the bilayer case.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
School of Engineering, Westlake University, Hangzhou, 310030, China.
2D stacking presents a promising avenue for creating periodic superstructures that unveil novel physical phenomena. While extensive research has focused on lateral 2D material superstructures formed through composition modulation and twisted moiré structures, the exploration of vertical periodicity in 2D material superstructures remains limited. Although weak van der Waals interfaces enable layer-by-layer vertical stacking, traditional methods struggle to control in-plane crystal orientation over large areas, and the vertical dimension is constrained by unscalable, low-throughput processes, preventing the achievement of global order structures.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!