The Rh(III)-catalyzed C-H functionalization and subsequent oxidative annulation between 5-aryl pyrazinones and internal alkynes are reported. This protocol provides facile access to a wide range of pyrazinone-linked naphthalenes via the C(sp)-H alkenylation and subsequent annulation. This transformation is characterized by mild conditions, simplicity, and excellent functional group compatibility. Notably, it is a first report of the utilization of pyrazinones as directing groups in C-H functionalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.1c01752 | DOI Listing |
Eur J Med Chem
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt.
Alzheimer's disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-β deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[b]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
Here, we report the enantioselective total syntheses of four diepoxy--kaurane diterpenoids including (-)-Macrocalin B, (-)-Acetyl-macrocalin B, and (-)-Isoadenolin A and the revised structure of (-)-Phyllostacin I, which hinges on the strategic design of a regioselective and stereospecific trapping of a highly reactive [3.2.1]-bridgehead enone intermediate via a tethered intramolecular Diels-Alder reaction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Copenhagen, Department of Chemistry, Universitetsparken 5, DK-2100, Copenhagen, DENMARK.
The introduction of 4,5-dihydroazuleno[2,1,8-ija]azulene as a central core between two 1,4-dithiafulvene (DTF) units provides a novel class of extended tetrathiafulvalene (TTF) electron donors. Herein we present the synthesis of such compounds with the azulenoazulene further expanded by annulation to benzene, naphthalene, or thiophene rings. Moreover, unsymmetrical donor-acceptor chromophores with one DTF and one carbonyl at the central core are presented.
View Article and Find Full Text PDFJ Org Chem
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Gaohai Road, Guiyang 550014, P. R. China.
A copper-catalyzed regioselective annulation reaction, conducted without ligands or oxidants, has been developed for the preparation of multisubstituted furans from the readily available starting materials, β-keto esters and propargyl acetates. This process accommodates a wide range of functional groups, resulting in furan skeletons with diverse substitution patterns. The method's potential synthetic utility is highlighted by its applicability in gram-scale preparations and late-stage modifications of natural products.
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
Developing asymmetric transformations using electroredox and N-heterocyclic carbene (NHC)-catalyzed radical pathways is still desirable and challenging. Herein, we report an iodide-promoted β-carbon activation (LUMO-lowering process) of enals via electroredox carbene catalysis coupled with a hydrogen evolution reaction (HER). This strategy offers an environmentally friendly and sustainable route for rapidly assembling synthetically useful chiral naphthopyran-3-one in good to excellent yield and enantioselectivity using traceless electrons as inexpensive and greener oxidants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!