Hypoxia-ischemia (HI) injury is a leading cause of neonatal death and long-term disability, and existing treatment options for HI offer only modest benefit. Early intervention with the drug metformin has been shown to promote functional improvement in numerous rodent models of injury and has pleiotropic cellular effects in the brain. We have previously shown that 1 week of metformin treatment initiated 24 ​h after HI in neonatal mice resulted in improved motor and cognitive performance, activation of endogenous neural precursor cells (NPCs), and increased oligodendrogenesis. While promising, a limitation to this work is that immediate pharmacological intervention is not always possible in the clinic. Herein, we investigated whether delaying metformin treatment to begin in the subacute phase post-HI would still effectively promote recovery. Male and female C57/BL6 mice received HI injury postnatally, and metformin treatment began 7 days post-HI for up to 4 weeks. Motor and cognitive performance was assessed across time using behavioural tests (cylinder, foot fault, puzzle box). We found that metformin improved motor and cognitive behaviour, decreased inflammation, and increased oligodendrocytes in the motor cortex. Our present findings demonstrate that a clinically relevant subacute metformin treatment paradigm affords the potential to treat neonatal HI, and that improved outcomes occur through modulation of the inflammatory response and oligodendrogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474427PMC
http://dx.doi.org/10.1016/j.bbih.2020.100119DOI Listing

Publication Analysis

Top Keywords

metformin treatment
20
motor cognitive
12
subacute metformin
8
improved motor
8
cognitive performance
8
treatment
6
metformin
6
treatment reduces
4
reduces inflammation
4
inflammation improves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!