Background And Purpose: Prostate specific membrane antigen positron emission tomography imaging (PSMA-PET) has demonstrated potential for intra-prostatic lesion localization. We leveraged our existing database of co-registered PSMA-PET imaging with cross sectional digitized pathology to model dose coverage of histologically-defined prostate cancer when tailoring brachytherapy dose escalation based on PSMA-PET imaging.

Materials And Methods: Using a previously-developed automated approach, we created segmentation volumes delineating underlying dominant intraprostatic lesions for ten men with co-registered pathology-imaging datasets. To simulate realistic high-dose-rate brachytherapy (HDR-BT) treatments, we registered the PSMA-PET-defined segmentation volumes and underlying cancer to 3D trans-rectal ultrasound images of HDR-BT cases where 15 Gray (Gy) was delivered. We applied dose/volume optimization to focally target the dominant intraprostatic lesion identified on PSMA-PET. We then compared histopathology dose for all high-grade cancer within whole-gland treatment plans versus PSMA-PET-targeted plans. Histopathology dose was analyzed for all clinically significant cancer with a Gleason score of 7or greater.

Results: The standard whole-gland plans achieved a median [interquartile range] D98 of 15.2 [13.8-16.4] Gy to the histologically-defined cancer, while the targeted plans achieved a significantly higher D98 of 16.5 [15.0-19.0] Gy (p = 0.007).

Conclusion: This study is the first to use digital histology to confirm the effectiveness of PSMA-PET HDR-BT dose escalation using automatically generated contours. Based on the findings of this study, PSMA-PET lesion dose escalation can lead to increased dose to the ground truth histologically defined cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459608PMC
http://dx.doi.org/10.1016/j.phro.2021.07.001DOI Listing

Publication Analysis

Top Keywords

dose escalation
12
prostate specific
8
specific membrane
8
membrane antigen
8
antigen positron
8
positron emission
8
emission tomography
8
high-dose-rate brachytherapy
8
brachytherapy dose
8
segmentation volumes
8

Similar Publications

Pharmacodynamics of NOSO-502 studied in vitro and in vivo: determination of the dominant pharmacodynamic index driver.

J Antimicrob Chemother

January 2025

Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol, UK.

Background: NOSO-5O2 is the first clinical candidate of a new antimicrobial class-the odilorhabdins. The pharmacodynamics of NOSO-502 were studied in vitro and in vivo to establish the pharmacodynamic index (PDI) driver.

Methods: A dilutional pharmacokinetic system was used for in vitro experiments.

View Article and Find Full Text PDF

Purpose: More active high-dose chemotherapy (HDC) regimens are needed for autologous stem-cell transplantation (ASCT) for refractory lymphomas. Seeking HDC enhancement with a poly(ADP-ribose) polymerase (PARP) inhibitor, we observed marked synergy between olaparib and vorinostat/gemcitabine/busulfan/melphalan (GemBuMel) against lymphoma cell lines, mediated by inhibition of DNA damage repair. Our preclinical work led us to clinically study olaparib/vorinostat/GemBuMel with ASCT.

View Article and Find Full Text PDF

Background: Lipodystrophy encompasses a group of rare disorders associated with severe metabolic disease. These disorders are defined by abnormal fat distribution, with near-total (generalized lipodystrophy, GL) or partial (partial lipodystrophy, PL; i.e.

View Article and Find Full Text PDF

Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.

View Article and Find Full Text PDF

Introduction: In the treatment of cancer, immunomodulatory approaches are developed to support the organism in fighting cancer or to enhance the immunomodulatory effects of local ablative techniques. To this end, we conducted an interventional, open-label, single-arm Phase I trial to evaluate the safety and tolerability of intratumoral phIL12 plasmid DNA gene electrotransfer as primary objectives.

Methods: The study was dose-escalating with 3 consecutive cohorts of 3 patients per phIL12 dose level (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!