Ecological forecasting has vast potential to support environmental decision making with repeated, testable predictions across management-relevant timescales and locations. Yet resource managers rarely use co-designed forecasting systems or embed them in decision making. Although prediction of planned management outcomes is particularly important for biological invasions to optimize when and where resources should be allocated, spatial-temporal models of spread typically have not been openly shared, iteratively updated, or interactive to facilitate exploration of management actions. We describe a species-agnostic, open-source framework - called the Pest or Pathogen Spread (PoPS) Forecasting Platform - for co-designing near-term iterative forecasts of biological invasions. Two case studies are presented to demonstrate that iterative calibration yields higher forecast skill than using only the earliest-available data to predict future spread. The PoPS framework is a primary example of an ecological forecasting system that has been both scientifically improved and optimized for real-world decision making through sustained participation and use by management stakeholders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453564 | PMC |
http://dx.doi.org/10.1002/fee.2357 | DOI Listing |
Biology (Basel)
December 2024
Smithsonian Tropical Research Institute, Ciudad de Panamá 0843-03092, Panama.
Biological invasions occur when organisms are moved from their native range and introduced into new areas, where they can spread and become a potential risk for native organisms. Invasive species are well recorded for vertebrates, plants and a number of invertebrates. A taxa for which there is a lack of information in some countries are arachnids, and this is the case of reports on introduced species in Panama.
View Article and Find Full Text PDFPLoS One
January 2025
School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America.
This study presents a novel non-autonomous mathematical model to explore the intricate relationship between temperature and desert locust population dynamics, considering the influence of both solitarious and gregarious phases across all life stages. The model incorporates temperature-dependent parameters for key biological processes, including egg development, hopper growth, adult maturation, and reproduction. Theoretical analysis reveals the model's capacity for complex dynamical behaviors, such as multiple stable states and backward bifurcations, suggesting the potential for sudden and unpredictable population shifts.
View Article and Find Full Text PDFNative animals worldwide are experiencing long-term coexistence with invasive plants, leading to diverse behavioral changes. Invasive plants may create new habitat structures that affect the distribution or behavior of prey, which in turn might attract predators to these novel habitats, thereby altering predator-prey dynamics within the ecosystem. However, this phenomenon is rarely reported.
View Article and Find Full Text PDFEcol Evol
January 2025
Instituto de Ciencias del Mar y Limnología Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria Mexico City Mexico.
Aquatic ecosystems are reservoirs of biodiversity and are highly threatened. Among the main threats to biodiversity are invasive species and global warming, the later has allowed the establishment of invasive species from originally warmer climates outside their native range by reducing the barriers to their establishment and distribution. Behaviour is the immediate response that species modify to counteract changes in their environment.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!