Neutrophil extracellular traps in gastrointestinal cancer.

World J Gastroenterol

Department of General Surgery, Chinese PLA General Hospital First Medical Center, Beijing 100853, China.

Published: September 2021

Gastrointestinal (GI) cancer is a high-risk malignancy and is characterized by high mortality and morbidity worldwide. Neutrophil extracellular traps (NETs), a weblike structure consisting of chromatin DNA with interspersed cytoplasmic and granule proteins, are extruded by activated neutrophils to entrap and kill bacteria and fungi. However, accumulating evidence shows that NETs are related to the progression and metastasis of cancer. In clinical studies, NETs infiltrate primary GI cancer tissues and are even more abundant in metastatic lesions. The quantity of NETs in peripheral blood is revealed to be associated with ascending clinical tumour stages, indicating the role of NETs as a prognostic markers in GI cancer. Moreover, several inhibitors of NETs or NET-related proteins have been discovered and used to exert anti-tumour effects or , suggesting that NETs can be regarded as targets in the treatment of GI cancer. In this review, we will focus on the role of NETs in gastric cancer and colorectal cancer, generalizing their effects on tumour-related thrombosis, invasion and metastasis. Recent reports are also listed to show the latest evidences of how NETs affect GI cancer. Additionally, notwithstanding the scarcity of systematic studies elucidating the underlying mechanisms of the interaction between NETs and cancer cells, we highlight the potential importance of NETs as biomarkers and anti-tumour therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433615PMC
http://dx.doi.org/10.3748/wjg.v27.i33.5474DOI Listing

Publication Analysis

Top Keywords

nets
11
cancer
10
neutrophil extracellular
8
extracellular traps
8
gastrointestinal cancer
8
role nets
8
traps gastrointestinal
4
cancer gastrointestinal
4
cancer high-risk
4
high-risk malignancy
4

Similar Publications

Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.

Med Image Anal

January 2025

Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea. Electronic address:

This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions.

View Article and Find Full Text PDF

Background: Malaria continues to be an important threat to public health and infects millions of children under 5 years of age each year. Although Ethiopia has set targets for at-risk group interventions to eradicate and manage malaria, the illness is still a serious public health problem in areas where it is endemic, especially in the unique lowlands in the Borena zone.

Objective: This study aimed to determine the prevalence of malaria and associated factors among children in Borena's pastoral communities, Oromia Regional State, southern Ethiopia, in 2022.

View Article and Find Full Text PDF

Over the past decade, there has been a global increase in the incidence of skin cancers. Skin cancer has serious consequences if left untreated, potentially leading to more advanced cancer stages. In recent years, deep learning based convolutional neural network have emerged as powerful tools for skin cancer detection.

View Article and Find Full Text PDF

Larviciding for malaria control and elimination in Africa.

Malar J

January 2025

RBM Partnership Vector Control Working Group, Chem du Pommier 40, 1218, Le Grand-Saconnex, Switzerland.

Background: Global progress toward malaria elimination and eradication goals has stagnated in recent years, with many African countries reporting increases in malaria morbidity and mortality. Insecticide-treated nets and indoor residual spraying are effective, but the emergence and increased intensity of insecticide resistance and the challenge of outdoor transmission are undermining their impact. New tools are needed to get back on track towards global targets.

View Article and Find Full Text PDF

Inhalable DNase I@Au hybrid nanoparticles for radiation sensitization and metastasis inhibition by elimination of neutrophil extracellular traps.

Biomaterials

January 2025

Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China. Electronic address:

High-dose radiation therapy is a widely used clinical strategy to inhibit tumor growth. However, the rapid generation of excessive reactive oxygen species (ROS) triggers the formation of neutrophil extracellular traps (NETs), which capture free tumor cells in the bloodstream, promoting metastasis. In this study, we developed a hybrid nanoparticle composed of DNase I and gold (DNase I@Au) to enhance radiotherapy efficacy while mitigating metastasis by precisely eliminating NETs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!