Respiration is a key process in the cycling of particulate matter and, therefore, an important control mechanism of carbon export to the ocean's interior. Most of the fixed carbon is lost in the upper ocean, and only a minor amount of organic material sustains life in the deep-sea. Conditions are particularly extreme in hadal trenches, and yet they host active biological communities. The source of organic carbon that supports them and the contribution of these communities to the ocean carbon cycle, however, remain uncertain. Here we report on size-fractionated depth profiles of plankton respiration assessed from the activity of the electron transport system in the Atacama Trench region, and provide estimates of the minimum carbon flux (C) needed to sustain the respiratory requirements from the ocean surface to hadal waters of the trench and shallower nearby sites. Plankton < 100 m contributed about 90% to total community respiration, whose magnitude was highly correlated with surface productivity. Remineralization rates were highest in the euphotic zone and declined sharply within intermediate oxygen-depleted waters, remaining fairly constant toward the bottom. Integrated respiration in ultra-deep waters (> 1000 m) was comparable to that found in upper layers, with 1.3 ± 0.4 mmol C m d being respired in the hadopelagic. The comparison between our C models and estimates of sinking particle flux revealed a carbon imbalance through the mesopelagic that was paradoxically reduced at greater depths. We argue that large fast-sinking particles originated in the overlying surface ocean may effectively sustain the respiratory carbon demands in this ultra-deep marine environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453769PMC
http://dx.doi.org/10.1002/lno.11866DOI Listing

Publication Analysis

Top Keywords

plankton respiration
8
atacama trench
8
trench region
8
carbon
8
organic carbon
8
carbon flux
8
sustain respiratory
8
respiration atacama
4
region implications
4
implications particulate
4

Similar Publications

Article Synopsis
  • - The study investigates the bacterial communities attached to submerged macrophytes (water plants) and their role in aquatic ecosystems, emphasizing their potential as biological carriers for planktonic bacteria.
  • - A total of 10,320 Operational Taxonomic Units (OTUs) were identified from samples of submerged plants, overlying water, and sediment, showing the highest bacterial richness in sediments.
  • - Significant differences were found in bacterial diversity between the sources, with distinct community compositions for bacteria from submerged macrophytes compared to those in water and sediment, highlighting the unique metabolic capacities of these bacteria.
View Article and Find Full Text PDF

Shallow saline lakes in the La Mancha Húmeda Biosphere Reserve in Central Spain show diverse degrees of cultural and natural eutrophication, prompting urgent conservation measures. This study focuses on 17 representative lakes from the site to assess seasonal nutrient dynamics and their connection to plankton metabolism (photosynthesis and respiration) during two successive hydrological periods. Effect of environmental factors was evaluated on a combination of several response variables, demonstrating that source of the nutrient inputs (ranging from natural to anthropic) had the highest influence on the nutrients stoichiometry and metabolic rates.

View Article and Find Full Text PDF

Biomass competition connects individual and community scaling patterns.

Nat Commun

November 2024

Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal.

Both metabolism and growth scale sublinearly with body mass across species. Ecosystems show the same sublinear scaling between production and total biomass, but ecological theory cannot reconcile the existence of these nearly identical scalings at different levels of biological organization. We attempt to solve this paradox using marine phytoplankton, connecting individual and ecosystem scalings across three orders of magnitude in body size and biomass.

View Article and Find Full Text PDF

Rhizostomeae species attract our attention because of their distinctive body shape, their large size and because of blooms of some species in coastal areas around the world. The impacts of these blooms on human activities, and the interest in consumable species and those of biotechnological value have led to a significant expansion of research into the physiology and functional biology of Rhizostomeae jellyfish over the last years. This review brings together information generated over these last decades on rhizostome body composition, locomotion, toxins, nutrition, respiration, growth, among other functional parameters.

View Article and Find Full Text PDF

Assessing the long-term adverse effects of aluminium nanoparticles on freshwater phytoplankton using isolated-species and microalgal communities.

Chemosphere

November 2024

Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040, Madrid, Spain. Electronic address:

The physicochemical properties of aluminum oxide nanoparticles (AlO-NPs or AlNPs) allow them to remain suspended in water for extended periods. Despite this, AlNPs are one of the least studied types of metal nanoparticles and pose a significant risk to aquatic ecosystems. Therefore, it is essential to understand the toxic mechanisms of AlNPs on microalgae and cyanobacteria, as they can have adverse effects on the entire aquatic food web.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!