The management of biological invasions is a worldwide conservation priority. Unfortunately, decision-making on optimal invasion management can be impeded by lack of information about the biological processes that determine invader success (i.e. biological uncertainty) or by uncertainty about the effectiveness of candidate interventions (i.e. operational uncertainty). Concurrent assessment of both sources of uncertainty within the same framework can help to optimize control decisions.Here, we present a Value of Information (VoI) framework to simultaneously analyse the effects of biological and operational uncertainties on management outcomes. We demonstrate this approach with a case study: minimizing the long-term population growth of musk thistle , a widespread invasive plant, using several insects as biological control agents, including , and .The ranking of biocontrol agents was sensitive to differences in the target weed's demography and also to differences in the effectiveness of the different biocontrol agents. This finding suggests that accounting for both biological and operational uncertainties is valuable when making management recommendations for invasion control. Furthermore, our VoI analyses show that reduction of all uncertainties across all combinations of demographic model and biocontrol effectiveness explored in the current study would lead, on average, to a 15.6% reduction in musk thistle population growth rate. The specific growth reduction that would be observed in any instance would depend on how the uncertainties actually resolve. Resolving biological uncertainty (across demographic model combinations) or operational uncertainty (across biocontrol effectiveness combinations) alone would reduce expected population growth rate by 8.5% and 10.5% respectively.. Our study demonstrates that intervention rank is determined both by biological processes in the targeted invasive populations and by intervention effectiveness. Ignoring either biological uncertainty or operational uncertainty may result in a suboptimal recommendation. Therefore, it is important to simultaneously acknowledge both sources of uncertainty during the decision-making process in invasion management. The framework presented here can accommodate diverse data sources and modelling approaches, and has wide applicability to guide invasive species management and conservation efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453580PMC
http://dx.doi.org/10.1111/1365-2664.13904DOI Listing

Publication Analysis

Top Keywords

operational uncertainty
16
biological operational
12
invasion management
12
biological uncertainty
12
population growth
12
biological
10
uncertainty
10
biological processes
8
sources uncertainty
8
operational uncertainties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!