The importance of input data on landslide susceptibility mapping.

Sci Rep

Laboratorio de Tsunamis y Paleosismología, Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Coyoacán, Ciudad de México, México.

Published: September 2021

Landslide detection and susceptibility mapping are crucial in risk management and urban planning. Constant advance in digital elevation models accuracy and availability, the prospect of automatic landslide detection, together with variable processing techniques, stress the need to assess the effect of differences in input data on the landslide susceptibility maps accuracy. The main goal of this study is to evaluate the influence of variations in input data on landslide susceptibility mapping using a logistic regression approach. We produced 32 models that differ in (1) type of landslide inventory (manual or automatic), (2) spatial resolution of the topographic input data, (3) number of landslide-causing factors, and (4) sampling technique. We showed that models based on automatic landslide inventory present comparable overall prediction accuracy as those produced using manually detected features. We also demonstrated that finer resolution of topographic data leads to more accurate and precise susceptibility models. The impact of the number of landslide-causing factors used for calculations appears to be important for lower resolution data. On the other hand, even the lower number of causative agents results in highly accurate susceptibility maps for the high-resolution topographic data. Our results also suggest that sampling from landslide masses is generally more befitting than sampling from the landslide mass center. We conclude that most of the produced landslide susceptibility models, even though variable, present reasonable overall prediction accuracy, suggesting that the most congruous input data and techniques need to be chosen depending on the data quality and purpose of the study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481530PMC
http://dx.doi.org/10.1038/s41598-021-98830-yDOI Listing

Publication Analysis

Top Keywords

input data
20
landslide susceptibility
16
data landslide
12
susceptibility mapping
12
landslide
10
landslide detection
8
automatic landslide
8
data
8
susceptibility maps
8
landslide inventory
8

Similar Publications

Background: Assisted partner services (APSs; sometimes called index testing) are now being brought to scale as a high-yield HIV testing strategy in many nations. However, the success of APSs is often hampered by low levels of partner elicitation. The Computer-Assisted Self-Interview (CASI)-Plus study sought to develop and test a mobile health (mHealth) tool to increase the elicitation of sexual and needle-sharing partners among persons with newly diagnosed HIV.

View Article and Find Full Text PDF

State-Level Influenza Hospitalization Burden in the United States, 2022-2023.

Am J Public Health

January 2025

Alexia Couture, A. Danielle Iuliano, Ryan Threlkel, Matthew Gilmer, Alissa O'Halloran, Dawud Ujamaa, Matthew Biggerstaff, and Carrie Reed are with the National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA. Howard H. Chang is with the Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA.

To develop a method leveraging hospital-based surveillance to estimate influenza-related hospitalizations by state, age, and month as a means of enhancing current US influenza burden estimation efforts. Using data from the Influenza Hospitalization Surveillance Network (FluSurv-NET), we extrapolated monthly FluSurv-NET hospitalization rates after adjusting for testing practices and diagnostic test sensitivities to non-FluSurv-NET states. We used a Poisson zero-inflated model with an overdispersion parameter within the Bayesian hierarchical framework and accounted for uncertainty and variability between states and across time.

View Article and Find Full Text PDF

Personalized cancer drug treatment is emerging as a frontier issue in modern medical research. Considering the genomic differences among cancer patients, determining the most effective drug treatment plan is a complex and crucial task. In response to these challenges, this study introduces the Adaptive Sparse Graph Contrastive Learning Network (ASGCL), an innovative approach to unraveling latent interactions in the complex context of cancer cell lines and drugs.

View Article and Find Full Text PDF

Background: Heart muscle damage from myocardial infarction (MI) is brought on by insufficient blood flow. The leading cause of death for middle-aged and older people worldwide is myocardial infarction (MI), which is difficult to diagnose because it has no symptoms. Clinicians must evaluate electrocardiography (ECG) signals to diagnose MI, which is difficult and prone to observer bias.

View Article and Find Full Text PDF

Entity-enhanced BERT for medical specialty prediction based on clinical questionnaire data.

PLoS One

January 2025

School of Industrial and Management Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea.

A medical specialty prediction system for remote diagnosis can reduce the unexpected costs incurred by first-visit patients who visit the wrong hospital department for their symptoms. To develop medical specialty prediction systems, several researchers have explored clinical predictive models using real medical text data. Medical text data include large amounts of information regarding patients, which increases the sequence length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!