Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Congenital Zika Syndrome (CZS) is characterized by changes in cranial morphology associated with heterogeneous neurological manifestations and cognitive and behavioral impairments. In this syndrome, longitudinal neuroimaging could help clinicians to predict developmental trajectories of children and tailor treatment plans accordingly. However, regularly acquiring magnetic resonance imaging (MRI) has several shortcomings besides cost, particularly those associated with childrens' clinical presentation as sensitivity to environmental stimuli. The indirect monitoring of local neural activity by non-invasive functional near-infrared spectroscopy (fNIRS) technique can be a useful alternative for longitudinally accessing the brain function in children with CZS. In order to provide a common framework for advancing longitudinal neuroimaging assessment, we propose a principled guideline for fNIRS acquisition and analyses in children with neurodevelopmental disorders. Based on our experience on collecting fNIRS data in children with CZS we emphasize the methodological challenges, such as clinical characteristics of the sample, desensitization, movement artifacts and environment control, as well as suggestions for tackling such challenges. Finally, metrics based on fNIRS can be associated with established clinical metrics, thereby opening possibilities for exploring this tool as a long-term predictor when assessing the effectiveness of treatments aimed at children with severe neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481532 | PMC |
http://dx.doi.org/10.1038/s41598-021-97450-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!