Whole-body and muscle responses to aerobic exercise training and withdrawal in ageing and COPD.

Eur Respir J

MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK

Published: May 2022

Background: Chronic obstructive pulmonary disease (COPD) patients exhibit lower peak oxygen uptake (' ), altered muscle metabolism and impaired exercise tolerance compared with age-matched controls. Whether these traits reflect muscle-level deconditioning (impacted by ventilatory constraints) and/or dysfunction in mitochondrial ATP production capacity is debated. By studying aerobic exercise training (AET) at a matched relative intensity and subsequent exercise withdrawal period we aimed to elucidate the whole-body and muscle mitochondrial responsiveness of healthy young (HY), healthy older (HO) and COPD volunteers to whole-body exercise.

Methods: HY (n=10), HO (n=10) and COPD (n=20) volunteers were studied before and after 8 weeks of AET (65% ' ) and after 4 weeks of exercise withdrawal. ' , muscle maximal mitochondrial ATP production rate (MAPR), mitochondrial content, mitochondrial DNA (mtDNA) copy number and abundance of 59 targeted fuel metabolism mRNAs were determined at all time-points.

Results: Muscle MAPR (normalised for mitochondrial content) was not different for any substrate combination in HO, HY and COPD at baseline, but mtDNA copy number relative to a nuclear-encoded housekeeping gene (mean±sd) was greater in HY (804±67) than in HO (631±69; p=0.041). AET increased ' in HO (17%; p=0.002) and HY (21%; p<0.001), but not COPD (p=0.603). Muscle MAPR for palmitate increased with training in HO (57%; p=0.041) and HY (56%; p=0.003), and decreased with exercise withdrawal in HO (-45%; p=0.036) and HY (-30%; p=0.016), but was unchanged in COPD (p=0.594). mtDNA copy number increased with AET in HY (66%; p=0.001), but not HO (p=0.081) or COPD (p=0.132). The observed changes in muscle mRNA abundance were similar in all groups after AET and exercise withdrawal.

Conclusions: Intrinsic mitochondrial function was not impaired by ageing or COPD in the untrained state. Whole-body and muscle mitochondrial responses to AET were robust in HY, evident in HO, but deficient in COPD. All groups showed robust muscle mRNA responses. Higher relative exercise intensities during whole-body training may be needed to maximise whole-body and muscle mitochondrial adaptation in COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095946PMC
http://dx.doi.org/10.1183/13993003.01507-2021DOI Listing

Publication Analysis

Top Keywords

whole-body muscle
8
aerobic exercise
8
exercise training
8
mitochondrial atp
8
atp production
8
exercise withdrawal
8
mitochondrial content
8
mtdna copy
8
copy number
8
mitochondrial
6

Similar Publications

Role of Abscisic Acid in the Whole-Body Regulation of Glucose Uptake and Metabolism.

Nutrients

December 2024

Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.

Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome.

View Article and Find Full Text PDF

The importance of gravity for human motor control is well established, but it remains unclear how the central nervous system accounts for gravitational changes to perform complex motor skills. We tested the hypothesis that microgravity and hypergravity have distinct effects on the neuromuscular control of reaching movements compared to normogravity. To test the influence of gravity levels on sensorimotor planning and control, participants (n = 9) had to reach toward visual targets during parabolic flights.

View Article and Find Full Text PDF

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

Background: Platinum-based chemotherapy provides curative treatment to more than 95% of patients with testicular germ cell tumor but it has negative cardiometabolic and neurological effects. Regular exercise can alleviate late chemotherapy-related toxicities. We examined the impact of a 6-month supervised aerobic-strength training on cognitive and cardiometabolic health and residual level of platinum in cancer survivors.

View Article and Find Full Text PDF

Characterizing the vestibular control of balance in the intrinsic foot muscles.

Gait Posture

December 2024

School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada. Electronic address:

Background: To maintain standing balance, vestibular cues are processed and integrated with other sensorimotor signals to produce appropriate motor adjustments. Whole-body vestibular-driven postural responses are context-dependent and transformed based upon head and foot posture. Previous reports indicate the importance of intrinsic foot muscles during standing, but it is unclear how vestibular-driven responses of these muscles are modulated by alterations in stability and head posture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!