A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Response of soil microbiome structure and its network profiles to four soil amendments in monocropping strawberry greenhouse. | LitMetric

With the constant surge of strawberry cultivation and human demand, widespread concern has been expressed about the severe soil and plant health problems caused by continuous strawberry cropping, particularly monocropping in greenhouses. Effective microorganisms (EM) and Bacillus subtilis (BS) have been extensively commercialized as biological control agents (BCAs) to promote plant growth and yield enhancement. However, their effects on soil microbes are obscure. To regulate the microbial community in continuous cropping strawberry soils, we developed four soil amendments based on these two BCAs by adding low and high contents of compost. The amplicon sequencing of bacterial and fungal ribosomal markers was applied to study the response of the soil microbiome structure. We noticed a sharp increase in bacterial diversity after adding EM-treated high compost and BS-treated low compost, while there was no significant change in fungal diversity among treatments. Through taxonomic classification and FUNGuild analysis, we found that the application of soil amendments resulted in a significant decline in the relative abundance of fungal plant pathogens (Rhizopus, Penicillium and Fusarium) in the soils; accordingly, the metabolic functions of a range of detrimental fungi were inhibited. Correlation analysis indicated that soil microbial community was indirectly driven by soil physicochemical properties. Co-occurrence networks revealed that soil amendments contributed to the connectivity of bacterial network, and EM-treated with high compost was the most complex and balanced. Collectively, EM-treated high compost and BS-treated low compost can well regulate the microbial community structure and thus maintain soil health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480769PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245180PLOS

Publication Analysis

Top Keywords

soil amendments
16
microbial community
12
em-treated high
12
high compost
12
soil
10
response soil
8
soil microbiome
8
microbiome structure
8
regulate microbial
8
compost bs-treated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!