Previous research has shown the novelty of lexical-tone chimeras (artificially constructed speech sounds created by combining normal speech sounds of a given language) to native speakers of the language from which the chimera components were drawn. However, the source of such novelty remains unclear. Our goal in this study was to separate the effects of chimeric tonal novelty in Mandarin speech from the effects of auditory signal manipulations. We recruited 20 native speakers of Mandarin and constructed two sets of lexical-tone chimeras by interchanging the envelopes and fine structures of both a falling/yi/and a rising/yi/Mandarin tone through 1, 2, 3, 4, 6, 8, 16, 32, and 64 auditory filter banks. We conducted pitch-perception ability tasks via a two-alternative, forced-choice paradigm to produce behavioral (versus physiological) pitch perception data. We also obtained electroencephalographic measurements through the scalp-recorded frequency-following response (FFR). Analyses of variances and Greenhouse-Geisser procedures revealed that the differences observed in the participants' reaction times and FFR measurements were attributable primarily to chimeric novelty rather than signal manipulation effects. These findings can be useful in assessing neuroplasticity and developing speech-processing strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00315125211049723 | DOI Listing |
Autism Res
December 2024
Psychiatry and Addictology Department, CIUSSS-NIM Research Center, University of Montreal, Montreal, Quebec, Canada.
Child-directed speech (CDS), which amplifies acoustic and social features of speech during interactions with young children, promotes typical phonetic and language development. In autism, both behavioral and brain data indicate reduced sensitivity to human speech, which predicts absent, decreased, or atypical benefits of exaggerated speech signals such as CDS. This study investigates the impact of exaggerated fundamental frequency (F0) and voice-onset time on the neural processing of speech sounds in 22 Chinese-speaking autistic children aged 2-7 years old with a history of speech delays, compared with 25 typically developing (TD) peers.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
Age-related sensory declines are unavoidable and closely linked to decreased visual, auditory, and cognitive functions. However, the interrelations of these declines remain poorly understood. Despite extensive studies in each domain, shared age-related characteristics are complex and may not consistently manifest direct relationships at the individual level.
View Article and Find Full Text PDFNeural Netw
December 2024
Communications and Signal Processing Group, Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
First spike timings are crucial for decision-making in spiking neural networks (SNNs). A recently introduced first-spike (FS) coding method demonstrates comparable accuracy to firing-rate (FR) coding in processing complex temporal information through supervised learning. However, its performance still falls behind advanced approaches.
View Article and Find Full Text PDFAudiol Res
December 2024
Doctoral School, Grigore T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania.
Background/objectives: Understanding speech in background noise is a challenging task for listeners with normal hearing and even more so for individuals with hearing impairments. The primary objective of this study was to develop Romanian speech material in noise to assess speech perception in diverse auditory populations, including individuals with normal hearing and those with various types of hearing loss. The goal was to create a versatile tool that can be used in different configurations and expanded for future studies examining auditory performance across various populations and rehabilitation methods.
View Article and Find Full Text PDFObjective: In preterm and very low birth weight (VLBW) infants, attention-related problems have been found to be more pronounced and emerge later as academic difficulties that may persist into school age. In response, based on three attention networks: alerting, orienting, and executive attention, we examined the development of attention functions at 42 months (not corrected for prematurity) as a follow-up study of VLBW ( = 23) and normal birth weight (NBW: = 48) infants.
Method: The alerting and orienting attention networks were examined through an overlap task with or without warning signal.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!