The capacity of X-ray photoelectron spectroscopy (XPS) to provide information on the electronic structure of molecular organometallic complexes of Ln(II) ions (Ln = lanthanide) has been examined for the first time. XPS spectra were obtained on the air-sensitive molecular trivalent 4f Cp'Ln complexes (Ln = Sm, Eu, Gd, Tb; Cp' = CHSiMe) and compared to those of the highly reactive divalent complexes, [K(crypt)][Cp'Ln] (crypt = 2.2.2-cryptand), which have either 4f (Sm, Eu) or 4f5d electron configurations (Gd, Tb). The Ln 4d, Si 2p, and C 1s regions of the Ln(III) and Ln(II) complexes were identified and compared. The metal 4d peaks of these molecular lanthanide complexes were used diagnostically to compare oxidation states. The valence region of the Gd(III) and Gd(II) complexes was also examined with XPS and density function theory/random phase approximation (DFT/RPA) calculations, and this led to the tentative assignment of a signal from the 5d electron consistent with a 4f5d electron configuration for Gd(II).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c06980 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, McGill University, Montréal, Québec H3A 0G4, Canada.
Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India.
The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
Purpose: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!