A generalized case-control (GCC) study, like the standard case-control study, leverages outcome-dependent sampling (ODS) to extend to nonbinary responses. We develop a novel, unifying approach for analyzing GCC study data using the recently developed semiparametric extension of the generalized linear model (GLM), which is substantially more robust to model misspecification than existing approaches based on parametric GLMs. For valid estimation and inference, we use a conditional likelihood to account for the biased sampling design. We describe analysis procedures for estimation and inference for the semiparametric GLM under a conditional likelihood, and we discuss problems with estimation and inference under a conditional likelihood when the response distribution is misspecified. We demonstrate the flexibility of our approach over existing ones through extensive simulation studies, and we apply the methodology to an analysis of the Asset and Health Dynamics Among the Oldest Old study, which motives our research. The proposed approach yields a simple yet versatile solution for handling ODS in a wide variety of possible response distributions and sampling schemes encountered in practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358725PMC
http://dx.doi.org/10.1111/biom.13571DOI Listing

Publication Analysis

Top Keywords

estimation inference
12
conditional likelihood
12
generalized case-control
8
generalized linear
8
gcc study
8
inference conditional
8
generalized
4
sampling
4
case-control sampling
4
sampling generalized
4

Similar Publications

The demographic history of a population, and the distribution of fitness effects (DFE) of newly arising mutations in functional genomic regions, are fundamental factors dictating both genetic variation and evolutionary trajectories. Although both demographic and DFE inference has been performed extensively in humans, these approaches have generally either been limited to simple demographic models involving a single population, or, where a complex population history has been inferred, without accounting for the potentially confounding effects of selection at linked sites. Taking advantage of the coding-sparse nature of the genome, we propose a 2-step approach in which coalescent simulations are first used to infer a complex multi-population demographic model, utilizing large non-functional regions that are likely free from the effects of background selection.

View Article and Find Full Text PDF

Bayesian deep learning applied to diabetic retinopathy with uncertainty quantification.

Heliyon

January 2025

Information Technology Department, Technical College of Informatics-Akre, Akre University for Applied Sciences, Kurdistan Regain, Iraq.

Deep Learning (DL) has significantly contributed to the field of medical imaging in recent years, leading to advancements in disease diagnosis and treatment. In the case of Diabetic Retinopathy (DR), DL models have shown high efficacy in tasks such as classification, segmentation, detection, and prediction. However, DL model's opacity and complexity lead to errors in decision-making, particularly in complex cases, making it necessary to estimate the model's uncertainty in predictions.

View Article and Find Full Text PDF

The Sr/Sr isotope ratio has been widely used as an indicator of provenance and migration of aquatic animals, and has applications in other areas such as in environmental and forensic studies. However, the modeling of the spatial distribution in the Amazon basin is still incipient, preventing large-scale applications. In this study, we present a baseline of the Sr/Sr isotope ratio in surface waters of the Amazon basin to infer the provenance and migration patterns of fish.

View Article and Find Full Text PDF

Fire safety in healthcare facilities is extremely important due to limited evacuation capacity of occupants. Therefore, poor fire safety precautions lead to more fatalities and financial losses. This study introduces an effective fire risk management approach for healthcare buildings utilizing an interval valued neutrosophic-fuzzy framework.

View Article and Find Full Text PDF

Feature-selective adaptation of numerosity perception.

Proc Biol Sci

January 2025

Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.

Perceptual adaptation has been widely used to infer the existence of numerosity detectors, enabling animals to quickly estimate the number of objects in a scene. Here, we investigated, in humans, whether numerosity adaptation is influenced by stimulus feature changes as previous research suggested that adaptation is reduced when the colour of adapting and test stimuli did not match. We tested whether such adaptation reduction is due to unspecific novelty effects or changes of stimuli identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!