Direct-acting antivirals have revolutionized the treatment of chronic hepatitis C. Sofosbuvir and simeprevir are prescribed worldwide. However, there is a scarcity of information regarding their genotoxicity. Therefore, the present study assessed the cytotoxic and genotoxic effects of sofosbuvir and simeprevir, alone and combined with ribavirin. HepG2 cells were analyzed using the in vitro cytokinesis-block micronucleus cytome assay. Cells were treated for 24 h with sofosbuvir (0.011-1.511 mM), simeprevir (0.156-5.0 µM), and their combinations with ribavirin (0.250-4.0 mM). No significant differences were observed in the nuclear division cytotoxicity index, reflecting the absence of cytotoxic effects associated to sofosbuvir. However, the highest concentration of simeprevir showed a significant difference for the nuclear division cytotoxicity index. Moreover, significant results were observed for nuclear division cytotoxicity index in two combinations of sofosbuvir plus ribavirin and only in the highest combination of simeprevir plus ribavirin. Additionally, our results showed that sofosbuvir did not increase the frequency of chromosomal damage, but simeprevir significantly increased the frequency of micronuclei at the highest concentrations. The combination index demonstrated that both sofosbuvir and simeprevir produced antagonism to the genotoxic effects of ribavirin. In conclusion, our results showed that simeprevir, but not sofosbuvir, has genotoxic effects in HepG2 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202120200632 | DOI Listing |
Arq Gastroenterol
January 2025
Universidade Federal de São Paulo, São Paulo, SP, Brasil.
Background: Liver biopsy (LB) is still the gold standard method for assessing hepatic fibrosis (HF), associated diseases, and liver inflammation. Nowadays, noninvasive techniques such as Acoustic radiation force impulse (ARFI) elastography have been introduced instead of liver biopsy. However, there are controversies about the time it should be performed after treatment for hepatitis C virus (HCV).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. Electronic address:
Velpatasvir and simeprevir are two direct acting antivirals that are often used in combination with sofosbuvir to treat HCV infections. Herein, an environmentally benign spectrofluorimetric method was developed for simultaneous quantification of velpatasvir and simeprevir in pharmaceutical and plasma samples. To address the issue of overlapping fluorescence spectra presented by these compounds, this method integrates synchronous fluorescence and second-derivative spectroscopy.
View Article and Find Full Text PDFArch Virol
February 2024
Tropical Medicine Department, Tanta University, Tanta, Egypt.
Diagnostics (Basel)
September 2023
Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65522, Saudi Arabia.
Hepatitis C virus (HCV) is a hepatotropic virus that affects millions of human lives worldwide. Direct-acting antiviral (DAA) regimens are the most effective HCV treatment option. However, amino acid substitution-dependent resistance to DAAs has been a major challenge.
View Article and Find Full Text PDFBMC Chem
July 2023
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
The present work was developed to create three rapid, simple, eco-friendly, cheap spectrophotometric methods for concurrent assay of Sofosbuvir (SOF) and Simeprevir (SMV) in their pure, laboratory prepared mixture and pharmaceutical dosage form with high degree of accuracy and precision. Three methods were developed including iso-absorptive point, ratio subtraction and dual wavelength. The linear range of the proposed methods was 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!