Unlabelled: Hyperglycemia, a major characteristic of diabetes, is considered to play a vital role in diabetic complications. High glucose levels have been found to inhibit the mineralization of dental pulp cells. However, gene expression associated with this phenomenon has not yet been reported. This is important for future dental therapeutic application.
Objective: Our study aimed to investigate the effect of high glucose levels on mineralization of human dental pulp-derived cells (hDPCs) and identify the genes involved.
Methodology: hDPCs were cultured in mineralizing medium containing 25 or 5.5 mM D-glucose. On days 1 and 14, RNA was extracted and expression microarray performed. Then, differentially expressed genes (DEGs) were selected for further validation using the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. Cells were fixed and stained with alizarin red on day 21 to detect the formation of mineralized nodules, which was further quantified by acetic acid extraction.
Results: Comparisons between high-glucose and low-glucose conditions showed that on day 1, there were 72 significantly up-regulated and 75 down-regulated genes in the high-glucose condition. Moreover, 115 significantly up- and 292 down-regulated genes were identified in the high-glucose condition on day 14. DEGs were enriched in different GO terms and pathways, such as biological and cellular processes, metabolic pathways, cytokine-cytokine receptor interaction and AGE-RAGE signaling pathways. RT-qPCR results confirmed the significant expression of pyruvate dehydrogenase kinase 3 (PDK3), cyclin-dependent kinase 8 (CDK8), activating transcription factor 3 (ATF3), fibulin-7 (Fbln-7), hyaluronan synthase 1 (HAS1), interleukin 4 receptor (IL-4R) and apolipoprotein C1 (ApoC1).
Conclusions: The high-glucose condition significantly inhibited the mineralization of hDPCs. DEGs were identified, and interestingly, HAS1 and Fbln-7 genes may be involved in the glucose inhibitory effect on hDPC mineralization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477757 | PMC |
http://dx.doi.org/10.1590/1678-7757-2020-1074 | DOI Listing |
Sci Adv
January 2025
Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
Gestational diabetes mellitus (GDM), a transient form of diabetes that resolves postpartum, is a major risk factor for type 2 diabetes (T2D) in women. While the progression from GDM to T2D is not fully understood, it involves both genetic and environmental components. By integrating clinical, metabolomic, and genome-wide association study (GWAS) data, we identified associations between decreased sphingolipid biosynthesis and future T2D, in part through the allele of the gene in Hispanic women shortly after a GDM pregnancy.
View Article and Find Full Text PDFCell Rep
January 2025
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:
Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.
The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.
View Article and Find Full Text PDFDiabetes
January 2025
Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.
View Article and Find Full Text PDFCells
January 2025
Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!