Sugars released by thermochemical pretreatment of lignocellulosic biomass are possible substrate for hydrogen production. However, the major drawback for bacterial fermentation is the toxicity of weak acids and furan derivatives normally present in such substrate. This study aimed to investigate the metabolism involved in hydrogen production by the isolate Enterobacter LBTM2 using 10, 20 and 30-fold diluted synthetic (SH) and sugarcane bagasse hemicellulose (SBH) hydrolysates. In addition, the effects of acetic acid, formic acid and furfural on the bacterial metabolism, as well as detoxification of SBH with activated carbon and molecularly imprinted polymers on the hydrogen production were assessed. The results showed the best hydrogen yield was 0.46 mmol H2/mmol sugar for 20-times diluted SH, which was 2.3-times higher than obtained in SBH experiments. Bacterial growth and hydrogen production were negatively affected by 0.8 g/L of acetic acid when added alone, but were totally inhibited when formic acid (0.4 g/L) and furfural (0.3 g/L) were also supplied. However the maximum hydrogen production of SBH20 has duplicated when 3% of powdered activated carbon was added to the SBH experiment. The results presented herein can be helpful in understanding the bottlenecks in biohydrogen production and could contribute towards development of lignocellulosic biorefinery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202120201679 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Electrocatalytic dehalogenative deuteration is a sustainable method for precise deuteration, whereas its Faradaic efficiency (FE) is limited by a high overpotential and severe D evolution reaction (DER). Here, Cu site-adjusted adsorption and crown ether-reconfigured interfacial DO are reported to cooperatively increase the FE of dehalogenative deuteration up to 84% at -100 mA cm. Cu sites strengthen the adsorption of aryl iodides, promoting interfacial mass transfer and thus accelerating the kinetics toward dehalogenative deuteration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFDalton Trans
January 2025
Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
Metal-catalyzed hydrogen isotope exchange (HIE) has become a valuable method for incorporating deuterium and tritium into organic molecules, with applications in a wide range of scientific fields. This study explores the role of transition metal cooperativity in enhancing catalytic hydrogen/deuterium (H/D) exchange using early-late heterobimetallic polyhydride (ELHB) complexes. A series of four ELHB complexes, of general formula [M(CHBu)(H)M'Cp*], combining early transition metals (M = Hf, Ta) with late metals (M' = Ir, Os), were synthesized and evaluated for their catalytic activity in HIE of (hetero)arenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!