Reduction of Ice Adhesion Using Surface Acoustic Waves: Nanoscale Vibration and Interface Heating Effects.

Langmuir

Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and Shaanxi Key Laboratory of Micro and Nano Electromechanical Systems, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.

Published: October 2021

Ice accumulation causes great risks to aircraft, electric power lines, and wind-turbine blades. For the ice accumulation on structural surfaces, ice adhesion force is a crucial factor, which generally has two main sources, for exampple, electrostatic force and mechanical interlocking. Herein, we present that surface acoustic waves (SAWs) can be applied to minimize ice adhesion by simultaneously reducing electrostatic force and mechanical interlocking, and generating interface heating effect. A theoretical model of ice adhesion considering the effect of SAWs is first established. Experimental studies proved that the combination of nanoscale vibration and interface heating effects lead to the reduction of ice adhesion on the substrate. With the increase of SAW power, the electrostatic force decreases due to the increase of dipole spacings, which is mainly attributed to the SAW induced nanoscale surface vibration. The interface heating effect leads to the transition of the locally interfacial contact phase from solid-solid to solid-liquid, hence reducing the mechanical interlocking of ice. This study presents a strategy of using SAWs device for ice adhesion reduction, and results show a considerable potential for application in deicing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c01852DOI Listing

Publication Analysis

Top Keywords

ice adhesion
24
interface heating
16
vibration interface
12
electrostatic force
12
mechanical interlocking
12
reduction ice
8
surface acoustic
8
acoustic waves
8
nanoscale vibration
8
heating effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!