A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hierarchically Ordered Macro-Microporous Polyoxometalate-Based Metal-Organic Framework Single Crystals. | LitMetric

Hierarchically Ordered Macro-Microporous Polyoxometalate-Based Metal-Organic Framework Single Crystals.

ACS Nano

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China.

Published: October 2021

Facile construction of ordered macroporous polyoxometalate-based metal-organic frameworks (POM@MOFs) to break the intrinsic microporous restriction is significant but remains challenging. On one hand, the POMs introduced improve the structural stability and modify the pores of MOFs, ., introducing functional catalytic and adsorptive units. Meanwhile, the acidic POMs severely affect the nucleation and growth of the POM@MOFs, resulting in complicated synthesis and difficult assembly control. Herein, a general approach has been developed to fabricate ordered macroporous POM@MOF single crystals, involving close-packed polystyrene (PS) nanosphere templates. The artificially selected polar solvents exerting strong solvent effect with POMs weaken the affinity between POMs and metal ions, thereby effectively stabilizing the precursors from assembly before filling into the PS template interstices. The weak alkaline carboxylate used regulates the nucleation and growth of POM@MOFs through deprotonation of the ligands as well as coordinating modulation, affording a series of hierarchically cuboctahedral POM@MOF single crystals with ordered macropores (. 180 nm) and intrinsic micropores after template removal. The ordered macroporous structure and thinned microporous skeleton markedly improve mass diffusion properties, while the integral single-crystal lattice retains superior stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c06259DOI Listing

Publication Analysis

Top Keywords

single crystals
12
ordered macroporous
12
polyoxometalate-based metal-organic
8
nucleation growth
8
growth pom@mofs
8
pom@mof single
8
hierarchically ordered
4
ordered macro-microporous
4
macro-microporous polyoxometalate-based
4
metal-organic framework
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!